EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dynamic Computer Simulation of Robotic Mechanisms

Download or read book Dynamic Computer Simulation of Robotic Mechanisms written by Velraj Ramaswamy and published by . This book was released on 1984 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Efficient Dynamic Simulation of Robotic Mechanisms

Download or read book Efficient Dynamic Simulation of Robotic Mechanisms written by Kathryn Lilly and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient Dynamic Simulation of Robotic Mechanisms presents computationally efficient algorithms for the dynamic simulation of closed-chain robotic systems. In particular, the simulation of single closed chains and simple closed-chain mechanisms is investigated in detail. Single closed chains are common in many applications, including industrial assembly operations, hazardous remediation, and space exploration. Simple closed-chain mechanisms include such familiar configurations as multiple manipulators moving a common load, dexterous hands, and multi-legged vehicles. The efficient dynamics simulation of these systems is often required for testing an advanced control scheme prior to its implementation, to aid a human operator during remote teleoperation, or to improve system performance. In conjunction with the dynamic simulation algorithms, efficient algorithms are also derived for the computation of the joint space and operational space inertia matrices of a manipulator. The manipulator inertia matrix is a significant component of any robot dynamics formulation and plays an important role in both simulation and control. The efficient computation of the inertia matrix is highly desirable for real-time implementation of robot dynamics algorithms. Several alternate formulations are provided for each inertia matrix. Computational efficiency in the algorithm is achieved by several means, including the development of recursive formulations and the use of efficient spatial transformations and mathematics. All algorithms are derived and presented in a convenient tabular format using a modified form of spatial notation, a six-dimensional vector notation which greatly simplifies the presentation and analysis of multibody dynamics. Basic definitions and fundamental principles required to use and understand this notation are provided. The implementation of the efficient spatial transformations is also discussed in some detail. As a means of evaluating efficiency, the number of scalar operations (multiplications and additions) required for each algorithm is tabulated after its derivation. Specification of the computational complexity of each algorithm in this manner makes comparison with other algorithms both easy and convenient. The algorithms presented in Efficient Dynamic Simulation of Robotic Mechanisms are among the most efficient robot dynamics algorithms available at this time. In addition to computational efficiency, special emphasis is also placed on retaining as much physical insight as possible during algorithm derivation. The algorithms are easy to follow and understand, whether the reader is a robotics novice or a seasoned specialist.

Book Real Time Dynamics of Manipulation Robots

Download or read book Real Time Dynamics of Manipulation Robots written by M. Vukobratovic and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fourth book from the Series "Scientific Fundamentals of Ro botics". The first two volumes have established abackqround for studying the dynamics and control of robots. While the first book was exclusive ly devoted to the dynamics of active spatial mechanisms, the second treated the problems of the dynamic control of manipulation robots. In contrast to the first two books, where recursive computer-aided me thods for setting robot dynamic equations where described, this mono graph presents a new approach to the formation of robot dynamics. The goal is to achieve the real-time model computation using up-to-date mi crocomputers. The presented concept could be called a numeric-symbolic, or analytic, approach to robot modelling. It will be shown that the generation of analytical robot model may give new excellent possibili ties concerning real-time applications. It is of essential importance in synthesizing the algorithms for nonadaptive and adaptive control of manipulation robots. If should be pointed out that the high computational efficiency has been achieved by off-line computer-aided preparation of robot equations. The parameters of a specified robot must be given in advance. This, af ter each significant variation in robot structure (geometrical and dy namical parameters) ,we must repeat the off-line stage. Thus is why the numerical procedures will always have their place in studying the dy namic properties of robotic systems. This monograph is organized in 5 chapters.

Book Applied Dynamics of Manipulation Robots

Download or read book Applied Dynamics of Manipulation Robots written by Miomir Vukobratovic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the period 1982-1985, six books of the series: Scientific Fun damentals of Robotics were published by Springer-Verlag. In chronolo gical order these were: Dynamics of Manipulation Robots: Theory and Application, by M. Vukobra tovic and V. Potkonjak, Control of Manipulation Robots: Theory and Ap plication, by M. vukobratovic and D. Stokic, Kinematics and Trajectory Synthesis of Manipulation Robots, by M. Vukobratovic and H. Kircanski, Real-Time Dynamics of Hanipulation Robots by M. Vukobratovic and N. Kircanski, Non-Adaptive and Adaptive Control of Manipulation Robots, by M. Vukobratovic, D. Stokic and N. Kircanski and Computer-Aided De sign and Applied Dynamics of Manipulation Robots, by M. Vukobratovic and V. Potkonjak. Within the series, during 1989, two monographs dealing with new sub jects will be published. So far, amongst the published monographs, Vol. 1 has been translated into Japanese, Volumes 2 and 5 into Russian, and Volumes 1-6 will appear in Chinese and Hungarian. In the author's opinion, the afore mentioned monographs, in principle, cover with sufficient breadth, the topics devoted to the design of ro bots and their control systems, at the level of post-graduate study in robotics. However, if this material was also to apply to the study of robotics at under-graduate level, it would have to be modified so as to obtain the character of a textbook. With this in mind, it must be noted that the subject matter contained in the text cannot be simpli fied but can only be elaborated in more detail.

Book Robot Dynamics Algorithms

Download or read book Robot Dynamics Algorithms written by Roy Featherstone and published by Springer. This book was released on 2007-10-16 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present computationally efficient algorithms for calculating the dynamics of robot mechanisms represented as systems of rigid bodies. The efficiency is achieved by the use of recursive formulations of the equations of motion, i.e. formulations in which the equations of motion are expressed implicitly in terms of recurrence relations between the quantities describing the system. The use of recursive formulations in dynamics is fairly new, 50 the principles of their operation and reasons for their efficiency are explained. Three main algorithms are described: the recursIve Newton-Euler formulation for inverse dynamics (the calculation of the forces given the accelerations), and the composite-rigid-body and articulated-body methods for forward dynamics (the calculation of the accelerations given the forces). These algorithms are initially described in terms of an un-branched, open loop kinematic chain -- a typical serial robot mechanism. This is done to keep the descriptions of the algorithms simple, and is in line with descriptions appearing in the literature. Once the basic algorithms have been introduced, the restrictions on the mechanism are lifted and the algorithms are extended to cope with kinematic trees and loops, and general constraints at the joints. The problem of simulating the effect of contact between a robot and its environment is also considered. Some consideration is given to the details and practical problems of implementing these algori?hms on a computer.

Book Robot Motion

    Book Details:
  • Author : Michael Brady
  • Publisher : MIT Press
  • Release : 1982
  • ISBN : 9780262021821
  • Pages : 618 pages

Download or read book Robot Motion written by Michael Brady and published by MIT Press. This book was released on 1982 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamics; Feedback control; Trajectory planning; Compliance; Task planning.

Book Dynamics of Manipulation Robots

Download or read book Dynamics of Manipulation Robots written by M. Vukobratovic and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph represents the first book of the series entitled "SCI ENTIFIC FUNDAMENTALS OF ROBOTICS". The aim of this monograph is to ap proach the dynamics of active mechanisms from the standpoint of its application to the synthesis of complex motion and computer-aided de sign of manipulation mechanisms with some optimal performances. The rapid development of a new class of mechanisms, which may be referred to as active mechanisms, contributed to their application in various environments (from underwater to cosmic) . Because of some specific fea tures, these mechanisms require very careful description, both in a mechanical sense (kinematic and dynamic) and in the synthesis of algo rithms for precise tracking of the above motion under insufficiently defined operating conditions. Having also in mind the need for a very fast (even real-time) calculation of system dynamics and for eliminating, in principle, the errors made when forming mathematical models "by hand" this monograph will primarily present methods for automatic for mUlation of dynamic equations of motion of active spatial mechanisms. Apart from these computer-oriented methods, mention will be made of all those methods which have preceded the computer-oriented procedures, predominantly developed for different problems of rigid body dynamics. If we wish to systematically establish the origins of the scientific discipline, which could be called robot dynamics, we must recall some groups and individuals, who, by solving actual problems in the synthe sis and control of artificial motion, have contributed to a gradual formation of this discipline.

Book Modelling And Simulation Of Robot Manipulators  A Parallel Processing Approach

Download or read book Modelling And Simulation Of Robot Manipulators A Parallel Processing Approach written by Albert Y Zomaya and published by World Scientific Publishing Company. This book was released on 1993-01-29 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to describe how parallel computer architectures can be used to enhance the performance of robots, and their great impact on future generations of robots. It provides an in-depth, consistent and rigorous treatment of the topic. A clear definition of tools with results is given which can be applied to parallel processing for robot kinematics and dynamics. Another advantageous feature is that the algorithms presented have been implemented using a parallel processing system, unlike many publications in the field which have presented results in only theoretical terms. This book also includes “benchmark” results that can be used for the development of future work, or can serve as a basis for comparison with other work. In addition, it surveys useful material to aid readers in pursuing further research.

Book Robotics and Mechatronics

Download or read book Robotics and Mechatronics written by Chin-Hsing Kuo and published by Springer Nature. This book was released on 2019-09-26 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the latest advances, innovations and applications in the field of robotics and mechatronics, as presented by leading international researchers and engineers at the 6th IFToMM International Symposium on Robotics and Mechatronics (ISRM), held in Taipei, Taiwan, on October 28–30, 2019. It covers highly diverse topics, including mechanism synthesis, analysis, and design, kinematics and dynamics of multibody systems, modelling and simulation, sensors and actuators, novel robotic systems, industrial- and service-related robotics and mechatronics, medical robotics, and historical developments in robotics and mechatronics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that spur novel research directions and foster new, multidisciplinary collaborations.

Book Dynamics of Tree Type Robotic Systems

Download or read book Dynamics of Tree Type Robotic Systems written by Suril Vijaykumar Shah and published by Springer Science & Business Media. This book was released on 2012-12-14 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses dynamic modelling methodology and analyses of tree-type robotic systems. Such analyses are required to visualize the motion of a system without really building it. The book contains novel treatment of the tree-type systems using concept of kinematic modules and the corresponding Decoupled Natural Orthogonal Complements (DeNOC), unified representation of the multiple-degrees-of freedom-joints, efficient recursive dynamics algorithms, and detailed dynamic analyses of several legged robots. The book will help graduate students, researchers and practicing engineers in applying their knowledge of dynamics for analysis of complex robotic systems. The knowledge contained in the book will help one in virtual testing of robot operation, trajectory planning and control.

Book The Near minimum time Control of Open loop Articulated Kinematic Chains

Download or read book The Near minimum time Control of Open loop Articulated Kinematic Chains written by Michael Edwin Kahn and published by . This book was released on 1969 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: The time-optimal control of a system of rigid bodies connected in series by single-degree-of-freedom joints is studied. The dynamical equations of the system are highly nonlinear and a closed-form representation of the minimum-time feedback control is not possible. However, a suboptimal feedback control which provides a close approximation to the optimal control is developed. The suboptimal control is expressed in terms of switching curves for each of the system controls. These curves are obtained from the linearized equations of motion for the system. Approximations are made for the effects of gravity loads and angular velocity terms in the nonlinear equations of motion. Digital simulation is used to obtain a comparison of response of the optimal and suboptimal controls. The speed of response of the suboptimal control is found to compare quite favorably with the response speed of the optimal control. The analysis is applied to the control of three joints of a mechanical manipulator. Modifications of the suboptimal control for use in a sampled-data system are shown to result in good performance of a hydraulic manipulator under computer control. (Author).

Book Advanced Dynamics Modeling  Duality and Control of Robotic Systems

Download or read book Advanced Dynamics Modeling Duality and Control of Robotic Systems written by Edward Y.L. Gu and published by CRC Press. This book was released on 2021-09-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides detailed fundamental theoretical reviews and preparations necessary for developing advanced dynamics modeling and control strategies for various types of robotic systems. This research book specifically addresses and discusses the uniqueness issue of representing orientation or rotation, and further proposes an innovative isometric embedding approach. The novel approach can not only reduce the dynamic formulation for robotic systems into a compact form, but it also offers a new way to realize the orientational trajectory-tracking control procedures. In addition, the book gives a comprehensive introduction to fundamentals of mathematics and physics that are required for modeling robot dynamics and developing effective control algorithms. Many computer simulations and realistic 3D animations to verify the new theories and algorithms are included in the book as well. It also presents and discusses the principle of duality involved in robot kinematics, statics, and dynamics. The duality principle can guide the dynamics modeling and analysis into a right direction for a variety of robotic systems in different types from open serial-chain to closed parallel-chain mechanisms. It intends to serve as a diversified research reference to a wide range of audience, including undergraduate juniors and seniors, graduate students, researchers, and engineers interested in the areas of robotics, control and applications.

Book Computer Simulation and Experimental Validation of a Dynamic Model  Equivalent Rigid Link System  on a Single Link Flexible Manipulator

Download or read book Computer Simulation and Experimental Validation of a Dynamic Model Equivalent Rigid Link System on a Single Link Flexible Manipulator written by Robert P. Petroka and published by . This book was released on 1986 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexibility effects on robot manipulator design and control are typically ignored which is justified when large, bulky robotic mechanisms are moved at slow speeds. However, when increased speed and improved accuracy is desired in robot system performance it is necessary to consider flexible manipulators. This project simulates the motion of a single-link, flexible manipulator using the Equivalent Rigid Link System dynamic model and experimentally validates the computer simulation results. validation of the flexible manipulator dynamic model is necessary to ensure confidence of the model for use in future design and control applications of flexible manipulators.

Book Kinematic and Dynamic Simulation of Multibody Systems

Download or read book Kinematic and Dynamic Simulation of Multibody Systems written by Javier Garcia de Jalon and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical engineering, an engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solu tions, among others. The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for informa tion in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate edu cation and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the front page of the volume. The areas of concentration are applied mechanics, biomechanics, computa tional mechanics, dynamic systems and control, energetics, mechanics of material, processing, thermal science, and tribology. Professor Leckie, the consulting editor for applied mechanics, and I are pleased to present this volume of the series: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge by Professors Garcia de Jal6n and Bayo. The selection of this volume underscores again the interest of the Mechanical Engineering Series to provide our readers with topical monographs as well as graduate texts. Austin Texas Frederick F. Ling v The first author dedicates this book to the memory of Prof F. Tegerizo (t 1988), who introduced him to kinematics.

Book Multi body Dynamic Modeling of Multi legged Robots

Download or read book Multi body Dynamic Modeling of Multi legged Robots written by Abhijit Mahapatra and published by Springer Nature. This book was released on 2020-02-27 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton–Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.

Book Finite and Instantaneous Screw Theory in Robotic Mechanism

Download or read book Finite and Instantaneous Screw Theory in Robotic Mechanism written by Tao Sun and published by Springer Nature. This book was released on 2020-02-13 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a finite and instantaneous screw theory for the development of robotic mechanisms. It addresses the analytical description and algebraic computation of finite motion, resulting in a generalized type synthesis approach. It then discusses the direct connection between topology and performance models, leading to an integrated performance analysis and design framework. The book then explores parameter uncertainty and multiple performance requirements for reliable, optimal design methods, and describes the error accumulation principle and parameter identification algorithm, to increase robot accuracy. It proposes a unified and generic methodology, and appliesto the invention, analysis, design, and calibration of robotic mechanisms. The book is intended for researchers, graduate students and engineers in the fields of robotic mechanism and robot design and applications./div