EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Portfolio Choice Problems

    Book Details:
  • Author : Nicolas Chapados
  • Publisher : Springer Science & Business Media
  • Release : 2011-07-12
  • ISBN : 1461405777
  • Pages : 107 pages

Download or read book Portfolio Choice Problems written by Nicolas Chapados and published by Springer Science & Business Media. This book was released on 2011-07-12 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief offers a broad, yet concise, coverage of portfolio choice, containing both application-oriented and academic results, along with abundant pointers to the literature for further study. It cuts through many strands of the subject, presenting not only the classical results from financial economics but also approaches originating from information theory, machine learning and operations research. This compact treatment of the topic will be valuable to students entering the field, as well as practitioners looking for a broad coverage of the topic.

Book High Performance Optimization

Download or read book High Performance Optimization written by Hans Frenk and published by Springer Science & Business Media. This book was released on 2000 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time the techniques of solving linear optimization (LP) problems improved only marginally. Fifteen years ago, however, a revolutionary discovery changed everything. A new `golden age' for optimization started, which is continuing up to the current time. What is the cause of the excitement? Techniques of linear programming formed previously an isolated body of knowledge. Then suddenly a tunnel was built linking it with a rich and promising land, part of which was already cultivated, part of which was completely unexplored. These revolutionary new techniques are now applied to solve conic linear problems. This makes it possible to model and solve large classes of essentially nonlinear optimization problems as efficiently as LP problems. This volume gives an overview of the latest developments of such `High Performance Optimization Techniques'. The first part is a thorough treatment of interior point methods for semidefinite programming problems. The second part reviews today's most exciting research topics and results in the area of convex optimization. Audience: This volume is for graduate students and researchers who are interested in modern optimization techniques.

Book Discrete Choice Methods with Simulation

Download or read book Discrete Choice Methods with Simulation written by Kenneth Train and published by Cambridge University Press. This book was released on 2009-07-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.

Book Financial Decision Making Using Computational Intelligence

Download or read book Financial Decision Making Using Computational Intelligence written by Michael Doumpos and published by Springer Science & Business Media. This book was released on 2012-07-23 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.

Book Bayesian Statistics 9

    Book Details:
  • Author : José M. Bernardo
  • Publisher : Oxford University Press
  • Release : 2011-10-06
  • ISBN : 0199694583
  • Pages : 717 pages

Download or read book Bayesian Statistics 9 written by José M. Bernardo and published by Oxford University Press. This book was released on 2011-10-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.

Book Empirical Asset Pricing

Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.

Book Online Portfolio Selection

Download or read book Online Portfolio Selection written by Bin Li and published by CRC Press. This book was released on 2018-10-30 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the aim to sequentially determine optimal allocations across a set of assets, Online Portfolio Selection (OLPS) has significantly reshaped the financial investment landscape. Online Portfolio Selection: Principles and Algorithms supplies a comprehensive survey of existing OLPS principles and presents a collection of innovative strategies that leverage machine learning techniques for financial investment. The book presents four new algorithms based on machine learning techniques that were designed by the authors, as well as a new back-test system they developed for evaluating trading strategy effectiveness. The book uses simulations with real market data to illustrate the trading strategies in action and to provide readers with the confidence to deploy the strategies themselves. The book is presented in five sections that: Introduce OLPS and formulate OLPS as a sequential decision task Present key OLPS principles, including benchmarks, follow the winner, follow the loser, pattern matching, and meta-learning Detail four innovative OLPS algorithms based on cutting-edge machine learning techniques Provide a toolbox for evaluating the OLPS algorithms and present empirical studies comparing the proposed algorithms with the state of the art Investigate possible future directions Complete with a back-test system that uses historical data to evaluate the performance of trading strategies, as well as MATLAB® code for the back-test systems, this book is an ideal resource for graduate students in finance, computer science, and statistics. It is also suitable for researchers and engineers interested in computational investment. Readers are encouraged to visit the authors’ website for updates: http://olps.stevenhoi.org.

Book Stochastic Analysis  Filtering  and Stochastic Optimization

Download or read book Stochastic Analysis Filtering and Stochastic Optimization written by George Yin and published by Springer Nature. This book was released on 2022-04-22 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.

Book Data Analysis  Machine Learning and Applications

Download or read book Data Analysis Machine Learning and Applications written by Christine Preisach and published by Springer Science & Business Media. This book was released on 2008-04-13 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.

Book Financial Modeling Excellence

Download or read book Financial Modeling Excellence written by Azhar ul Haque Sario and published by Azhar Sario Authorship and Publishing. This book was released on 2024-09-09 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Modeling Excellence: Innovative Approaches to Stock Predictions (Third Edition) offers a comprehensive and advanced exploration of probabilistic models used in stock price predictions. The book begins with an in-depth analysis of time series data, covering essential topics such as stationarity, trend and seasonality analysis, and time series decomposition. It then delves into autoregressive (AR) models, moving average (MA) models, and their combinations, including ARMA and ARIMA models. Each chapter provides detailed explanations of model selection, parameter estimation, diagnostics, and validation, along with practical applications in financial forecasting. The book further explores state space models and the Kalman filter, offering insights into their implementation and applications in stock price predictions. Hidden Markov models (HMM), Bayesian models, and stochastic processes are also thoroughly examined, with a focus on their mathematical formulations, parameter estimation techniques, and real-world applications. Case studies and practical examples are provided throughout the book to illustrate the effectiveness of these models in financial analysis. This edition also introduces advanced techniques and future directions for each model, ensuring that readers are equipped with the latest tools and knowledge in the field. This third edition follows the first edition titled Stock Price Predictions: An Introduction to Probabilistic Models and the second edition titled Forecasting Stock Prices: Mathematics of Probabilistic Models. It continues to build on the foundation laid by its predecessors, offering new insights and innovations in financial modeling. As the first series of this edition, readers can look forward to the next series, which will be released soon, providing even more advanced techniques and applications in stock price predictions. This edition aims to equip readers with the latest tools and knowledge in the field, ensuring they are well-prepared to tackle the challenges of financial forecasting and stock price predictions.

Book Handbook on Information Technology in Finance

Download or read book Handbook on Information Technology in Finance written by Detlef Seese and published by Springer Science & Business Media. This book was released on 2008-05-27 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook contains surveys of state-of-the-art concepts, systems, applications, best practices as well as contemporary research in the intersection between IT and finance. Included are recent trends and challenges, IT systems and architectures in finance, essential developments and case studies on management information systems, and service oriented architecture modeling. The book shows a broad range of applications, e.g. in banking, insurance, trading and in non-financial companies. Essentially, all aspects of IT in finance are covered.

Book Machine Learning in Finance

Download or read book Machine Learning in Finance written by Matthew F. Dixon and published by Springer Nature. This book was released on 2020-07-01 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.

Book Handbook of Financial Econometrics

Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections

Book Handbook Of Financial Econometrics  Mathematics  Statistics  And Machine Learning  In 4 Volumes

Download or read book Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.

Book Linear and Mixed Integer Programming for Portfolio Optimization

Download or read book Linear and Mixed Integer Programming for Portfolio Optimization written by Renata Mansini and published by Springer. This book was released on 2015-06-10 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.

Book Risk Management and Simulation

Download or read book Risk Management and Simulation written by Aparna Gupta and published by CRC Press. This book was released on 2016-04-19 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenges of the current financial environment have revealed the need for a new generation of professionals who combine training in traditional finance disciplines with an understanding of sophisticated quantitative and analytical tools. Risk Management and Simulation shows how simulation modeling and analysis can help you solve risk managemen

Book Real Options in Engineering Design  Operations  and Management

Download or read book Real Options in Engineering Design Operations and Management written by Harriet Black Nembhard and published by CRC Press. This book was released on 2009-10-27 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given that engineering flexibility can potentially provide a competitive advantage, the question then becomes: Precisely how valuable is this flexibility? However, traditional methods often fail to accurately capture the economic value of investments in an environment of widespread uncertainty and rapid change. The real options method represents th