EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dual Mass Linear Vibration Silicon Based MEMS Gyroscope

Download or read book Dual Mass Linear Vibration Silicon Based MEMS Gyroscope written by Huiliang Cao and published by Springer Nature. This book was released on 2023-04-17 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the key technologies in the manufacture of double-mass line vibrating silicon micromechanical gyroscope, respectively. The design of gyrostructure, detection technology, orthogonal correction technology, the influence of temperature and the design of measurement and control system framework are introduced in detail, with illustrations for easy understanding. It presents the principle, structure and related technology of silicon-based MEMS gyroscope. The content enlightens the researchers of silicon-based MEMS gyroscopes and gives readers a new understanding of the structural design of silicon-based gyroscopes and the design of dual-mass gyroscopes.

Book MEMS Vibratory Gyroscopes

Download or read book MEMS Vibratory Gyroscopes written by Cenk Acar and published by Springer Science & Business Media. This book was released on 2008-12-16 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS Vibratory Gyroscopes provides a solid foundation in the theory and fundamental operational principles of micromachined vibratory rate gyroscopes, and introduces structural designs that provide inherent robustness against structural and environmental variations. In the first part, the dynamics of the vibratory gyroscope sensing element is developed, common micro-fabrication processes and methods commonly used in inertial sensor production are summarized, design of mechanical structures for both linear and torsional gyroscopes are presented, and electrical actuation and detection methods are discussed along with details on experimental characterization of MEMS gyroscopes. In the second part, design concepts that improve robustness of the micromachined sensing element are introduced, supported by constructive computational examples and experimental results illustrating the material.

Book Resonant MEMS

Download or read book Resonant MEMS written by Oliver Brand and published by John Wiley & Sons. This book was released on 2015-04-22 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

Book Whole Angle MEMS Gyroscopes

Download or read book Whole Angle MEMS Gyroscopes written by Doruk Senkal and published by John Wiley & Sons. This book was released on 2020-05-11 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the mathematical framework, technical language, and control systems know-how needed to design, develop, and instrument micro-scale whole-angle gyroscopes This comprehensive reference covers the technical fundamentals, mathematical framework, and common control strategies for degenerate mode gyroscopes, which are used in high-precision navigation applications. It explores various energy loss mechanisms and the effect of structural imperfections, along with requirements for continuous rate integrating gyroscope operation. It also provides information on the fabrication of MEMS whole-angle gyroscopes and the best methods of sustaining oscillations. Whole-Angle Gyroscopes: Challenges and Opportunities begins with a brief overview of the two main types of Coriolis Vibratory Gyroscopes (CVGs): non-degenerate mode gyroscopes and degenerate mode gyroscopes. It then introduces readers to the Foucault Pendulum analogy and a review of MEMS whole angle mode gyroscope development. Chapters cover: dynamics of whole-angle coriolis vibratory gyroscopes; fabrication of whole-angle coriolis vibratory gyroscopes; energy loss mechanisms of coriolis vibratory gyroscopes; and control strategies for whole-angle coriolis vibratory gyro- scopes. The book finishes with a chapter on conventionally machined micro-machined gyroscopes, followed by one on micro-wineglass gyroscopes. In addition, the book: Lowers barrier to entry for aspiring scientists and engineers by providing a solid understanding of the fundamentals and control strategies of degenerate mode gyroscopes Organizes mode-matched mechanical gyroscopes based on three classifications: wine-glass, ring/disk, and mass spring mechanical elements Includes case studies on conventionally micro-machined and 3-D micro-machined gyroscopes Whole-Angle Gyroscopes is an ideal book for researchers, scientists, engineers, and college/graduate students involved in the technology. It will also be of great benefit to engineers in control systems, MEMS production, electronics, and semi-conductors who work with inertial sensors.

Book Dual Mass MEMS Gyroscope Structure  Design  and Electrostatic Compensation

Download or read book Dual Mass MEMS Gyroscope Structure Design and Electrostatic Compensation written by Huiliang Cao and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Dual-mass MEMS gyroscope is one of the most popular inertial sensors. In this chapter, the structure design and electrostatic compensation technology for dual-mass MEMS gyroscope is introduced. Firstly, a classical dual-mass MEMS gyroscope structure is proposed, how it works as a tuning fork (drive anti-phase mode), and the structure dynamical model together with the monitoring system are presented. Secondly, the imperfect elements during the structure manufacture process are analyzed, and the quadrature error coupling stiffness model for dual-mass structure is proposed. After that, the quadrature error correction system based on coupling stiffness electrostatic compensation method is designed and evaluated. Thirdly, the dual-mass structure sensing mode modal is proposed, and the force rebalancing combs stimulation method is utilized to achieve sensing mode transform function precisely. The bandwidth of sensing open loop is calculated and experimentally proved as 0.54 times with the resonant frequency difference between sensing and drive modes. Then, proportional-integral-phase-leading controller is presented in sensing close loop to expand the bandwidth, and the experiment shows that the bandwidth is improved from 13 to 104 Hz. Finally, the results are concluded and summarized.

Book Design and Modeling of a Dual Mass SOI MEMS Gyroscope

Download or read book Design and Modeling of a Dual Mass SOI MEMS Gyroscope written by Ashwin A. Seshia and published by . This book was released on 1999 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Gyroscope Technologies

Download or read book Advances in Gyroscope Technologies written by Mario N. Armenise and published by Springer Science & Business Media. This book was released on 2010-11-22 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects and critically reviews the main results obtained by the scientific community in gyroscope technologies research field. It describes architectures, design techniques and fabrication technology of angular rate sensors proposed in literature. MEMS, MOEMS, optical and mechanical technologies are discussed together with achievable performance. The book also consideres future research trends aimed to cover special applications. The book is intended for researchers and Ph.D. students interested in modelling, design and fabrication of gyros. The book may be a useful education support in some university courses focused on gyro technologies.

Book Toward Inertial Navigation on Chip

Download or read book Toward Inertial Navigation on Chip written by Haoran Wen and published by Springer Nature. This book was released on 2019-09-14 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.

Book Vibratory Gyroscopes Based on Micro Electro Mechanical and non Micro Electro Mechanical Systems

Download or read book Vibratory Gyroscopes Based on Micro Electro Mechanical and non Micro Electro Mechanical Systems written by Valeri V. Chikovani and published by Cambridge Scholars Publishing. This book was released on 2023-12-15 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified approach for the two versions of Coriolis vibratory gyroscopes: Micro-Electro-Mechanical System (MEMS) and non-MEMS. It describes a new, differential mode of operation, analyzing the new triple mode gyro—rate, rate-integrating, and differential. The latter provides the gyro with an increased versatility by providing the maximum possible accuracy under changeable motion parameters and environmental conditions. The book also presents computer simulation, experiments, and test results on the rejection of external disturbances, and considers the fabrication processes of MEMS, metallic and quartz resonators. It will interest researchers, scientists, engineers, and students specializing in the field of inertial sensors, as well as engineers of digital control systems, and inertial sensors test-engineers. It can also be used as a reference book when designing vibratory gyros.

Book Microsensors

Download or read book Microsensors written by Oleg Minin and published by BoD – Books on Demand. This book was released on 2011-06-09 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is planned to publish with an objective to provide a state-of-art reference book in the area of microsensors for engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative research and developments in microsensors. This reference book is a collection of 13 chapters characterized in 4 parts: magnetic sensors, chemical, optical microsensors and applications. This book provides an overview of resonant magnetic field microsensors based on MEMS, optical microsensors, the main design and fabrication problems of miniature sensors of physical, chemical and biochemical microsensors, chemical microsensors with ordered nanostructures, surface-enhanced Raman scattering microsensors based on hybrid nanoparticles, etc. Several interesting applications area are also discusses in the book like MEMS gyroscopes for consumer and industrial applications, microsensors for non invasive imaging in experimental biology, a heat flux microsensor for direct measurements in plasma surface interactions and so on.

Book System Architecture for Mode matching a MEMS Gyroscope

Download or read book System Architecture for Mode matching a MEMS Gyroscope written by Henry Wu (M. Eng.) and published by . This book was released on 2009 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS gyroscopes are used to detect rotation rates and have enabled a variety of motion-based technologies in a range of industries. They are composed of micro-machined polysilicon structures that resonate and deflect when a rotation is experienced. The topic of this thesis surrounds a system architecture to optimize the performance of a gyroscope. The MEMS gyroscope contains a resonator and an accelerometer, modeled as a two degree-of-freedom mass-spring system. When the resonant frequencies of each mode are matched, the mechanical output of the gyroscope is maximal. Feedback is used to match the two modes by automatically tuning the voltage on the poly-silicon structure until the accelerometer resonant frequency matches that of the resonator. A square wave dither signal is introduced as quadrature error and is used to track the phase across the gyroscope's accelerometer. At mode-match, the phase lag is 90°, so the feedback mechanism maintains this 90° of phase lag between the input acceleration and mechanical output to keep the modes matched. Two controllers were tried in the feedback mechanism, a linear controller and a bang-bang controller. The bang-bang controller was found to produce better results, and was able to bring a pre-fabricated sensor die to mode-match and achieve a resolution floor of 12°/hr.

Book Fabrication  Testing and Characterization of MEMS Gyroscope

Download or read book Fabrication Testing and Characterization of MEMS Gyroscope written by Ridha Almikhlafi and published by . This book was released on 2017 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the design, fabrication and characterization of two Micro-Electro-Mechanical Systems (MEMS) vibratory gyroscopes fabricated using the Silicon-On-Insulator-Multi-User-MEMS Process (SOIMUMPs) and Polysilicon Multi-User-MEMS-Process (Poly-MUMPs). Firstly, relevant literature and background on static and dynamic analysis of MEMS gyroscopes are described. Secondly, the gyroscope analytical model is presented and numerically solved using Mathematica software. The lumped mass model was used to analytically design the gyroscope and predict their performance. Finite element analysis was carried out on the gyroscopes to verify the proposed designs. Thirdly, gyroscope fabrication using MEMSCAP's SOIMUMPs and PolyMUMPs processes is described. For the former, post-processing was carried out at the Quantum Nanofab Center (QNC) on a die-level in order to create the vibratory structural elements (cantilever beam). Following this, the PolyMUMPs gyroscopes are characterized optically by measuring their resonance frequencies and quality factor using a Laser Doppler Vibrometer (LDV). The drive resonance frequency was measured at 40 kHz and the quality factor as Q = 1. For the sense mode, the resonance frequency was measured at 55 kHz and the unity quality factor as Q = 1. The characterization results show large drive direction motions of 100 um/s in response to a voltage pulse of 10 V. The drive pull-in voltage was measured at 19 V. Finally, the ratio of the measured drive to sense mode velocities in response to a voltage pulse of 10 V was calculated at 1.375.

Book A High Aspect ratio High performance Polysilicon Vibrating Ring Gyroscope

Download or read book A High Aspect ratio High performance Polysilicon Vibrating Ring Gyroscope written by Farrokh Ayazi and published by . This book was released on 2000 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Control Design of MEMS Vibratory Gyroscopes

Download or read book Advanced Control Design of MEMS Vibratory Gyroscopes written by Juntao Fei and published by . This book was released on 2011-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: MEMS (Micro Electro Mechanical Systems) technologies were developed by applying semiconductor microfabrication technologies to make three-dimensional microstructures and mechanical systems. MEMS technologies offer the advantages of batch fabrication of numbers of devices as well as an ability to integrate multiple functional units in a small area, which is important for developing smart and sophisticated devices. Gyroscopes are commonly used sensors for measuring angular velocity in many areas of applications such as navigation, homing, and control stabilisation. Fabrication imperfections and thermal, mechanical noise may hinder the measurement of angular velocity of MEMS gyroscope. This book presents a comprehensive treatment of the analysis and advanced control design of MEMS gyroscope for the problem of angular velocity measurement and minimisation of the cross coupling between two axes.

Book Mechanical Design  Dynamics  and Control of Micro Vibratory Gyroscopes

Download or read book Mechanical Design Dynamics and Control of Micro Vibratory Gyroscopes written by Seyed Parsa Taheri Tehrani and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-machined vibratory gyroscopes are very small devices (up to a few millimeters in dimension) that work based on Coriolis force coupling between two resonance modes. The small size, low power consumption, and cheap price make these sensors popular in automotive, gaming, smart phones, and robotics industries. These sensors referred to as MEMS (microelectromechanical system) gyroscopes are currently not used for navigation applications because due to their miniature size and imperfections in fabrication methods they do not have enough accuracy. In this thesis, we present methods in design and control algorithms for MEMS vibratory gyroscopes to cancel the effect of imperfections in fabrication and improve gyroscopes' performance. First chapter of this thesis is an introduction on MEMS vibratory gyroscopes and their principles and standard operations modes.The second chapter presents the structural design and analysis of a single-structure 3-axis MEMS gyroscope. The gyroscope has four resonant modes of interest and uses a decoupling mechanism whereby auxiliary masses are used to actuate the drive mode of the gyroscope in order to reduce drive-force coupling to sense modes' motion (one of the sources of errors in MEMS gyroscopes). The use of auxiliary masses results in a two degree-of-freedom (DOF) mechanism of the drive mode. To compare the effectiveness of using auxiliary masses two gyroscope types has been design one actuated from auxiliary masses (type A) and one actuated from major masses (type B). The two designs are simulated analytically to study the displacement of each mass in each design while comparing the force required to achieve that displacement for drive mode. Experimental data from fabricated devices show how using auxiliary masses will decrease drive force coupling and as a result improve the gyroscope's performance. Third chapter describes the operation of a high quality factor gyroscope in various regimes where electromechanical nonlinearities introduce different forms of amplitude-frequency (A-f) dependence. Experiments are conducted using an epitaxially-encapsulated 2 x 2 mm2 quad-mass gyroscope (QMG) with a quality factor of 85,000. The device exhibits third-order Duffing nonlinearity at low bias voltages (15 V) due to the mechanical nonlinearity in the flexures and at high bias voltages (35 V) due to third-order electrostatic nonlinearity. At intermediate voltages (26 V), these third-order nonlinearities cancel and the amplitude-frequency dependence is greatly reduced. A model is developed to demonstrate the connection between the electromechanical nonlinearities and the amplitude-frequency dependence, also known as the backbone curve. Gyroscope operation is demonstrated in each nonlinear operating regime and the key performance measures of the gyroscope's performance, angle random walk (ARW) and bias instability, are measured as a function of drive-mode vibration amplitude. While the bias instability is nearly independent of the drive-mode’s nonlinearity, we find that ARW increases when the third-order nonlinearities are minimized, and the decrease in ARW due to increase of amplitude is independent of drive mode's type of nonlinearity.In the fourth chapter we present a direct angle measurement method in gyroscopes. Towards the objective of direct angle measurement using a rate integrating gyroscope (RIG) without a minimum rate threshold and performance limited only by electrical and mechanical thermal noise, in this chapter we present the implementation of a generalized electronic feedback method for the compensation of MEMS gyroscope damping asymmetry (anisodamping) and stiffness asymmetry (anisoelasticity) on a stand-alone digital signal processing (DSP) platform. Using the new method, the precession angle dependent bias error and minimum rate threshold, two issues identified by Lynch for a MEMS RIG due to anisodamping are overcome. To minimize angle dependent bias, we augment the electronic feedback force of the amplitude regulator with a non-unity gain output distribution matrix selected to correct for anisodamping. Using this method, we have decreased the angle dependent bias error by a factor of 30, resulting a minimum rate threshold of 2.5 dps. To further improve RIG performance, an electronically-induced self-precession rate is incorporated and successfully demonstrated to lower the rate threshold.

Book MEMS Accelerometers

Download or read book MEMS Accelerometers written by Mahmoud Rasras and published by MDPI. This book was released on 2019-05-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.