Download or read book DNA Interactions with Drugs and Other Small Ligands written by Marcio Santos Rocha and published by Elsevier. This book was released on 2023-03-01 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: DNA Interactions With Drugs and Other Small Ligands: Single Molecule Approaches and Techniques provides the reader with all the main information, a "state-of-the-art" of sorts and an overall review of the field. There is no other book currently available that covers all these subjects together. On the contrary, the different subjects that are developed in this book are currently scattered in journal articles and other books. - Presents a review of the fundamental knowledge, techniques and relevant information surrounding the field of DNA interactions with drugs and other ligands - Provides a resource like no other book available - Includes valuable information from the author who is a highly experienced researcher in the field
Download or read book Methods for Studying Nucleic Acid Drug Interactions written by Meni Wanunu and published by CRC Press. This book was released on 2016-04-19 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since most therapeutic efforts have been predominantly focused on pharmaceuticals that target proteins, there is an unmet need to develop drugs that intercept cellular pathways that critically involve nucleic acids. Progress in the discovery of nucleic acid binding drugs naturally relies on the availability of analytical methods that assess the eff
Download or read book Drug Nucleic Acid Interactions written by and published by Elsevier. This book was released on 2001-07-31 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consolidates the key methods for studying ligand-nucleic acid interactions into a convenient source. Techniques that are examined range from biophysical and chemical approaches to methods rooted in molecular and cell biology.
Download or read book Drug DNA Interactions written by Kazuo Nakamoto and published by John Wiley & Sons. This book was released on 2008-09-08 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn vital information about drug-DNA interactions from Drug-DNA Interactions: Structures and Spectra, the only comprehensive book written about this topic. Understand the types of structural and bonding information that can be obtained using specific physico-chemical methods and discover how to design new drugs that are more effective than current treatments and have fewer side effects. Find detailed information about X-ray crystallography, NMR spectroscopy, molecular modeling, and optical spectroscopy such as UV-Visible absorption, fluorescence, circular dichroism (CD), flow linear dichroism (FLD), infrared (IR) and Raman spectroscopy.
Download or read book DNA targeting Molecules as Therapeutic Agents written by Michael J Waring and published by Royal Society of Chemistry. This book was released on 2018-03-08 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: There have been remarkable advances towards discovering agents that exhibit selectivity and sequence-specificity for DNA, as well as understanding the interactions that underlie its propensity to bind molecules. This progress has important applications in many areas of biotechnology and medicine, notably in cancer treatment as well as in future gene targeting therapies. The editor and contributing authors are leaders in their fields and provide useful perspectives from diverse and interdisciplinary backgrounds on the current status of this broad area. The role played by chemistry is a unifying theme. Early chapters cover methodologies to evaluate DNA-interactive agents and then the book provides examples of DNA-interactive molecules and technologies in development as therapeutic agents. DNA-binding metal complexes, peptide and polyamide–DNA interactions, and gene targeting tools are some of the most compelling topics treated in depth. This book will be a valuable resource for postgraduate students and researchers in chemical biology, biochemistry, structural biology and medicinal fields. It will also be of interest to supramolecular chemists and biophysicists.
Download or read book Nucleic Acid Structure and Recognition written by Stephen Neidle and published by Oxford University Press, USA. This book was released on 2002 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed view of the molecular structures of DNA and RNA and how they are recognised by small molecules and proteins. Extensive source material is provided, including information on relevant web sites and computer programmes. The major methods of structural investigation for nucleic acids: X-ray crystallography, NMR, and molecular modelling are reviewed and their scope and limitations (in the context of nucleic acids) discussed. Also covered are the conformational features of nucleic acid building blocks, including a description of how base-pair morphologies are analysed; the structures of DNA double helices and helical oligonucleotides, emphasising current ideas on sequence-dependent structure; and DNA-DNA interactions, including triplexes and quadruplexes. The principles of RNA folding, ribosome, and ribozyme structure are also surveyed. Both covalent and non-covalent nucleic acid interactions with small molecules are described, with the emphasis on recognition principles and sequence specific gene recognition. The principles of protein - nucleic acid are covered, focussing on regulatory proteins. Nucleic Acid Structure and Recognition will therefore equip readers with a good understanding of all the important aspects of this major field. The Nucleic Acid Database (NDB) crystallographic and NMR structures for the nucleic acid structures described in the book are freely available through the Nucleic Acid Structure and Recognition website.
Download or read book Molecular Basis of Specificity in Nucleic Acid Drug Interactions written by A. Pullman and published by Springer. This book was released on 2012-10-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the central problems in the study of the mechanism of DNA-ligand interactions is the existence and nature of sequence specificity with respect to the base pairs of DNA. The presence of such a specificity could be of particular significance because it might possibly mean the involvement of specific genes in the effectiveness of the different drugs. The elucidation of the factors responsible for the specificity could then be important for the development of compounds susceptible to contribute to the control of gene expression and also to the development of rationally conceived, improved new generations of effective and specific chemotherapeutic agents. Important recent achievements, experimental and theoretical, in the analysis of such sequence specificities open prospects for possible rapid progress in this field. The 23rd Jerusalem symposium was devoted to the exploration of these recent achievements in relation to many types of ligand, with special emphasis on antitumor drugs. All major types of interaction, intercalation, groove binding, covalent linking, coordination, have been considered. So was also the effect of the interaction on the structure and properties of the nucleic acids and the relationship between the interaction and biological or pharmacological activities. We feel that this Volume presents a relatively complete up-to-date account of the state of the art in this important field of research.
Download or read book Biophysical Chemistry written by and published by BoD – Books on Demand. This book was released on 2020-02-19 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysical chemistry is one of the most interesting interdisciplinary research fields. Some of its different subjects have been intensively studied for decades. Now the field attracts not only scientists from chemistry, physics, and biology backgrounds but also those from medicine, pharmacy, and other sciences. We aimed to start this version of the book Biophysical Chemistry from advanced principles, as we include some of the most advanced subject matter, such as advanced topics in catalysis applications (first section) and therapeutic applications (second section). This led us to limit our selection to only chapters with high standards, therefore there are only six chapters, divided into two sections. We have assumed that the interested readers are familiar with the fundamentals of some advanced topics in mathematics such as integration, differentiation, and calculus and have some knowledge of organic and physical chemistry, biology, and pharmacy. We hope that the book will be valuable to graduate and postdoctoral students with the requisite background, and by some advanced researchers active in chemistry, biology, biochemistry, medicine, pharmacy, and other sciences.
Download or read book Principles of Nucleic Acid Structure written by Wolfram Saenger and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical ther modynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the grad uate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses. CHARLES R. CANTOR New York Preface This monograph is based on a review on polynucleotide structures written for a book series in 1976.
Download or read book Zinc Finger Proteins written by Shiro Iuchi and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the early 1980s, a few scientists started working on a Xenopus transcription factor, TFIIIA. They soon discovered a novel domain associated with zinc, and named this domain "zinc finger. " Th e number of proteins with similar zinc fingers grew quickly and these proteins are now called C2H2, Cys2His2 or classical zinc finger proteins. To date, about 24,000 C2H2 zinc finger proteins have been recognized. Approximately 700 human genes, or more than 2% of the genome, have been estimated to encode C2H2 finger proteins. From the beginning these proteins were thought to be numerous, but no one could have predicted such a huge number. Perhaps thousands of scientists are now working on C2H2 zinc finger proteins fi-om variou s viewpoints. This field is a good example of how a new science begins with the insight of a few scientists and how it develops by efforts of numerous independent scientists, in contrast to a policy-driven scientific project, such as the Human Genome Project, with goals clearly set at its inception and with work performed by a huge collaboration throughout the world. As more zinc finger proteins were discovered, several subfamilies, such as C2C2, CCHC, CCCH, LIM, RING, TAZ, and FYVE emerged, increasing our understanding of zinc fingers. The knowledge was overwhelming. Moreover, scientists began defining the term "zinc finger" differently and using various names for identical zinc fingers. These complications may explain why no single comprehensive resource of zinc finger proteins was available before this publication.
Download or read book Metal Complex DNA Interactions written by Nick Hadjiliadis and published by John Wiley & Sons. This book was released on 2009-03-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal ions and metal complexes have long been recognized ascritically important components of nucleic acid chemistry, both inregulation of gene expression and as promising therapeutic agents.Understanding how metal complexes interact with DNA has become anactive research area at the interface between chemistry, molecularbiology and medicine. Metal Complex - DNA Interactions provides a comprehensiveoverview of this increasingly diverse field, presenting recentdevelopments and the latest research with particular emphasis onmetal-based drugs and metal ion toxicity. The text is divided intofour parts: Basic Structural and Kinetic Aspects: includes chapterson sequence-selective metal binding to DNA and thermodynamicmodels. Medical Applications: focuses on anticancer platinumdrugs, including discussions on DNA repair in antitumor effects ofplatinum drugs and photo-dynamic therapy. DNA-Recognition - Nucleases and Sensor: describesprobes for DNA recognition, artificial restriction agents,metallo-DNAzymes for metal sensing applications and metal iondependent catalysis in nucleic acid enzymes. Toxicological Aspects: deals with structural studies ofmercury–DNA interactions, chromium-induced DNA damage andrepair, and the effect of arsenic and nickel on DNAintegrity. This book will be a valuable resource for academic researchersand professionals from a range of pharmaceutical and chemicalindustries, particularly those involved in the development of newand less toxic anticancer metallo-drugs, and in the field ofenvironmental and toxicological chemistry.
Download or read book Dynamics of Proteins and Nucleic Acids written by and published by Elsevier. This book was released on 2013-08-14 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published continuously since 1944, Advances in Protein Chemistry and Structural Biology has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. - Covers reviews of methodology and research in all aspects of protein chemistry - Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics
Download or read book Nucleic Acid Metal Ion Interactions written by Nicholas V Hud and published by Royal Society of Chemistry. This book was released on 2008-10-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural biochemical processes are routinely being discovered in living cells that involve RNA. Some of these processes, such as RNA interference, are now being exploited for biotechnology and medicinal applications. DNA has also proven in recent years to be more than a passive storehouse of information. For example, non-B-form DNA structures formed by G-rich DNA have been shown to participate in the regulation of gene expression, a discovery that presents new possibilities for drug targets in the genome. The current quest to understand how nucleic acid functions at the most fundamental level requires that we have a detailed understanding of nucleic acid-metal ion interactions. Because RNA and DNA are polyanions the structure and biological function of these biopolymers depends strongly on their association with metal ions. While this intimate connection between metal ions and nucleic function has been appreciated for decades, the noncovalent and dynamic nature of these interactions has continually presented challenges to the development of accurate and quantitative descriptions. Over the past few years the development of solution state spectroscopic techniques and the achievement of high resolution X-ray crystal structures have provided tremendous insights into the nature of nucleic acid-metal ion interactions, including direct evidence for their importance in determining nucleic acid structure, from the dictation of folding pathways followed by large RNA molecules to the subtle modulation of DNA groove widths. This new book provides a comprehensive review of the experimental studies that define our current understanding of nucleic acid-metal ion interactions with a particular emphasis being placed on experimental biophysical studies. However, the book is not merely a current review of the literature, as original material and fresh perspectives on published results are also presented. Particularly noteworthy topics include: -The chapter by Williams and fellow workers which reviews information provided by x-ray crystal structures and discusses what this information has revealed about the unique nature of Mg2+ interactions with RNA phosphate groups. The authors provide fresh insights, based upon structural comparisons, for how these interactions govern the local folding pathways of RNA. By dedicating separate chapters to the participation of metal ions in the kinetics and thermodynamics of RNA folding, this volume provides a more in depth treatise of both areas than is typically possible for reviews in which these two related, but distinct, topics are combined -Polyelectrolyte models of nucleic acids have proven to be extremely valuable for understanding the sequestering counterions in a so-called diffuse cloud around polymeric DNA. J. Michael Schurr provides a comprehensive review of polyanion models. Despite the success of polyelectrolyte models in describing some physical properties of nucleic acids, this topic is not always sufficiently understood by many researchers to make use of these models and this chapter serves as a valuable and up to date introduction to this topic. -The chapter by Pizarro and Sadler on metal ion-nucleic acid interactions in disease and medicine is complemented by a chapter by Lippert on coordinative bond formation between metal ions and nucleic acid bases. Together, these two chapters provide an overview of transition metal ion interactions with nucleic acids that illustrates the promise and peril that is associated with direct metal ion coordination to nucleic acid bases in living cells. The book is sufficiently detailed to serve as a reference source for researchers active in the field of nucleic acids biophysics and molecular biology. In addition, chapter authors have added introductory material and enough background material in each chapter so that the book can also can serve as an entry point for students and researchers that have not previously worked in the field which will make the book of lasting value and more accessible by a wider audience.
Download or read book Pharmacology written by Miles Hacker and published by Academic Press. This book was released on 2009-06-19 with total page 607 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pharmacology meets the rapidly emerging needs of programs training pharmacologic scientists seeking careers in basic research and drug discovery rather than such applied fields as pharmacy and medicine. While the market is crowded with many clinical and therapeutic pharmacology textbooks, the field of pharmacology is booming with the prospects of discovering new drugs, and virtually no extant textbook meets this need at the student level. The market is so bereft of such approaches that many pharmaceutical companies will adopt Hacker et al. to help train new drug researchers. The boom in pharmacology is driven by the recent decryption of the human genome and enormous progress in controlling genes and synthesizing proteins, making new and even custom drug design possible. This book makes use of these discoveries in presenting its topics, moving logically from drug receptors to the target molecules drug researchers seek, covering such modern topics along the way as side effects, drug resistance, pharmacogenomics, and even nutriceuticals, one in a string of culminating chapters on the drug discovery process. The book is aimed at advanced undergraduates and beginning graduate students in medical, pharmacy, and graduate schools looking for a solid introduction to the basic science of pharmacology and envisioning careers in drug research. - Uses individual drugs to explain molecular actions - Full color art program explains molecular and chemical concepts graphically - Logical structure reflecting the current state of pharmacology and translational research - Covers such intricacies as drug resistance and cell death - Consistent format across chapters and pedagogical strategies make this textbook a superior learning tool
Download or read book Cisplatin written by Bernhard Lippert and published by John Wiley & Sons. This book was released on 1999 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: 30 years after its discovery as an antitumor agent, cisplatin represents today one of the most successful drugs in chemotherapy. This book is intended to reminisce this event, to take inventory, and to point out new lines of development in this field. Divided in 6 sections and 22 chapters, the book provides an up-to-date account on topics such as - the chemistry and biochemistry of cisplatin, - the clinical status of Pt anticancer drugs, - the impact of cisplatin on inorganic and coordination chemistry, - new developments in drug design, testing and delivery. It also includes a chapter describing the historical development of the discovery of cisplatin. The ultimate question - How does cisplatin kill a cell? - is yet to be answered, but there are now new links suggesting how Pt binding to DNA may trigger a cascade of cellular reactions that eventually result in apoptosis. p53 and a series of damage recognition proteins of the HMG-domain family appear to be involved. The book addresses the problem of mutagenicity of Pt drugs and raises the question of the possible relevance of the minor DNA adducts, e.g. of interstrand cross-links, and the possible use of trans-(NH3)2Pt(II)-modified oligonucleotides in antisense and antigene strategies. Our present understanding of reactions of cisplatin with DNA is based upon numerous model studies (from isolated model nucleobases to short DNA fragments) and application of a large body of spectroscopic and other physico-chemical techniques. Thanks to these efforts there is presently no other metal ion whose reactions with nucleic acids are better understood than Pt. In a series of chapters, basic studies on the interactions of Pt electrophiles with nucleobases, oligonucleotides, DNA, amino acids, peptides and proteins are reported, which use, among others, sophisticated NMR techniques or X-ray crystallography, to get remarkable understanding of details on such reactions. Reactivity of cisplatin, once bound to DNA and formerly believed to be inert enough to stay, is an emerging phenomenon. It has (not yet) widely been studied but is potentially extremely important. Medicinal bioinorganic chemistry - the role of metal compounds in medicine - has received an enormous boost from cisplatin, and so has bioinorganic chemistry as a whole. There is hardly a better example than cisplatin to demonstrate what bioinorganic chemistry is all about: The marriage between classic inorganic (coordination) chemistry and the other life sciences - medicine, pharmacy, biology, biochemistry. Cisplatin has left its mark also on areas that are generally considered largely inorganic. The subject of mixed-valance Pt compounds is an example: From the sleeping beauty it made its way to the headlines of scientific journals, thanks to a class of novel Pt antitumor agents, the so-called "platinum pyrimidine blues". In the aftermath diplatinum (III) compounds were recognized and studies in large numbers, and now an organometalic chemistry of these diplatinum (III) species is beginning to emerge. The final section of the book is concerned with new developments such as novel di- and trinuclear Pt(II) drugs with DNA binding properties different from those of cisplatin, with orally active Pt(IV) drugs which are presently in clinical studies, and with attempts to modify combinatorial chemistry in such a way that it may become applicable to fast screening of Pt antitumor drugs. The potential of including computational methods in solving questions of Pt-DNA interactions is critically dealt with in the concluding chapter.
Download or read book Structural Biology in Drug Discovery written by Jean-Paul Renaud and published by John Wiley & Sons. This book was released on 2020-01-09 with total page 1437 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Download or read book Computational Approaches to Nuclear Receptors written by Pietro Cozzini and published by Royal Society of Chemistry. This book was released on 2012-11-30 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear receptors (NR) are ligand-induced activated transcription factors that are involved in numerous biological processes. Since the 1990's when the first structures were determined by means of X ray diffraction, the number of NR structures has increased considerably. Moreover several 'omics' projects (genomics, pharmcogenomics and proteomics) have opened up great opportunities for the discovery of new targets, the characterization of abnormal protein patterns, the selection of "tailored" drugs and the evaluation of drug efficacy even with a lack of structural data. Furthermore, structure-based drug design, computational methods for in silico screening and nanobiotechnology- based tools are simplifying this time-consuming and money-intensive research of lead compounds and, possibly, new drugs. Biological interactions such as those that occur between a protein and ligand are concerted events where flexible molecules interact. Thus understanding flexibility of large molecules or biological complexes is of primary importance to help define the right model to approximate the reality for drug discovery, virtual screening, food safety analysis, etc. NRs are known as flexible targets, with many structural similarities, in particular for their Ligand Binding Domain: these similarities could be assumed to share behavioural qualities that belong to this class of compounds. Thus to supply a possible, complete and exhaustive answer to questions about the behaviour of NRs, their interactions with new potential drugs, endocrine disruptors such as animal and human food toxins, food additives or industry residuals, it is mandatory to approach the problem from a different point of view: a molecular modelling approach, steered synthesis, and in vitro and in vivo tests, etc. The aim of this book is to provide a state of the art review on investigations into Nuclear Receptors.