EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Distributed Estimation and Quantization Algorithms for Wireless Sensor Networks

Download or read book Distributed Estimation and Quantization Algorithms for Wireless Sensor Networks written by Sahar Movaghati and published by . This book was released on 2014 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: In distributed sensing systems, measurements from a random process or parameter are usually not available in one place. Also, the processing resources are distributed over the network. This distributed characteristic of such sensing systems demands for special attention when an estimation or inference task needs to be done. In contrast to a centralized case, where the raw measurements are transmitted to a fusion centre for processing, distributed processing resources can be used for some local processing, such as data compression or estimation according to distributed quantization or estimation algorithms. Wireless sensor networks (WSNs) consist of small sensor devices with limited power and processing capability, which cooperate through wireless transmission, in order to fulfill a common task. These networks are currently employed on land, underground, and underwater, in a wide range of applications including environmental sensing, industrial and structural monitoring, medical care, etc. However, there are still many impediments that hold back these networks from being pervasive, some of which are characteristics of WSNs, such as scarcity of energy and bandwidth resources and limited processing and storage capability of sensor nodes. Therefore, many challenges still need to be overcome before WSNs can be extensively employed. In this study, we concentrate on developing algorithms that are useful for estimation tasks in distributed sensing systems, such as wireless sensor networks. In designing these algorithms we consider the special constraints and characteristics of such systems, i.e., distributed nature of the measurements and the processing resources, as well as the limited energy of wireless and often small devices. We first investigate a general stochastic inference problem. We design a non-parametric algorithm for tracking a random process using distributed and noisy measurements. Next, we narrow down the problem to the distributed parameter estimation, and design distributed quantizers to compress measurement data while maintaining an accurate estimation of the unknown parameter. The contributions of this thesis are as follows. In Chapter 3, we design an algorithm for the distributed inference problem. We first use factor graphs to model the stochastic dependencies among the variables involved in the problem and factorize the global inference problem to a number of local dependencies. A message passing algorithm called the sum-product algorithm is then used on the factor graph to determine local computations and data exchanges that must be performed by the sensing devices in order to achieve the estimation goal. To tackle the nonlinearities in the problem, we combine the particle filtering and Monte-Carlo sampling in the sum-product algorithm and develop a distributed non-parametric solution for the general nonlinear inference problems. We apply our algorithm to the problem of distributed target tracking and show that even with a few number of particles the algorithm can efficiently track the target. In the next three chapters of the thesis, we focus on the distributed parameter quantization under energy limitations. In such problems, each sensor device sends a compressed version of its noisy observation of the same parameter to the fusion centre, where the parameter is estimated from the received data. In Chapter 4, we design a set of local quantizers that quantize each sensor's measurement to a few bits. We optimize the quantizers' design by maximizing the mutual information of the quantized data and the unknown parameter. At the fusion centre, we design the appropriate estimator that incorporates the compressed data from all sensors to estimate the parameter. For very stringent energy constraints, in Chapter 5, we focus on the binary quantization, where each sensor quantizes its data to exactly one bit. We find a set of local binary quantizers that jointly quantize the unknown variable with high precision. In the fusion centre, a maximum likelihood decoder is designed to estimate the parameter from the received bits. In Chapter 6, for an inhomogeneous scenario, where measurements have different signal-to-noise ratios, we find the best sensor-to-quantizer assignment that minimizes the estimation error, using the Hungarian algorithm.

Book Wireless Sensor Networks

Download or read book Wireless Sensor Networks written by Cailian Chen and published by Springer. This book was released on 2014-12-10 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investigates the spatial distribution of sensor nodes and basic scalable estimation algorithms, the consensus-based estimation capability for a class of relay assisted sensor networks with asymmetric communication topology, and the problem of filter design for mobile target tracking over WSNs. From the system perspective, the network topology is closely related to the capability and efficiency of network-wide scalable distributed estimation. Wireless Sensor Networks: Distributed Consensus Estimation is a valuable resource for researchers and professionals working in wireless communications, networks and distributed computing. Advanced-level students studying computer science and electrical engineering will also find the content helpful.

Book Optimal Distributed Detection and Estimation in Static and Mobile Wireless Sensor Networks

Download or read book Optimal Distributed Detection and Estimation in Static and Mobile Wireless Sensor Networks written by Xusheng Sun and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation develops optimal algorithms for distributed detection and estimation in static and mobile sensor networks. In distributed detection or estimation scenarios in clustered wireless sensor networks, sensor motes observe their local environment, make decisions or quantize these observations into local estimates of finite length, and send/relay them to a Cluster-Head (CH). For event detection tasks that are subject to both measurement errors and communication errors, we develop an algorithm that combines a Maximum a Posteriori (MAP) approach for local and global decisions with low-complexity channel codes and processing algorithms. For event estimation tasks that are subject to measurement errors, quantization errors and communication errors, we develop an algorithm that uses dithered quantization and channel compensation to ensure that each mote's local estimate received by the CH is unbiased and then lets the CH fuse these estimates into a global one using a Best Linear Unbiased Estimator (BLUE). We then determine both the minimum energy required for the network to produce an estimate with a prescribed error variance and show how this energy must be allocated amongst the motes in the network. In mobile wireless sensor networks, the mobility model governing each node will affect the detection accuracy at the CH and the energy consumption to achieve this level of accuracy. Correlated Random Walks (CRWs) have been proposed as mobility models that accounts for time dependency, geographical restrictions and nonzero drift. Hence, the solution to the continuous-time, 1-D, finite state space CRW is provided and its statistical behavior is studied both analytically and numerically. The impact of the motion of sensor on the network's performance is also studied.

Book Distributed Quantization estimation for Wireless Sensor Networks

Download or read book Distributed Quantization estimation for Wireless Sensor Networks written by Alejandro Ribeiro and published by . This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book On Distributed Estimation for Resource Constrained Wireless Sensor Networks

Download or read book On Distributed Estimation for Resource Constrained Wireless Sensor Networks written by Alireza Sani and published by . This book was released on 2017 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The accuracy of DES depends on many factors such as intensity of observation noises in sensors, quantization errors in sensors, available power and bandwidth of the network, quality of communication channels between sensors and the FC, and the choice of fusion rule in the FC. Taking into account all of these contributing factors and implementing a DES system which minimizes the MSE and satisfies all constraints is a challenging task. In order to probe into different aspects of this challenging task we identify and formulate the following three problems and address them accordingly:

Book On Distributed Estimation for Power Constrained Wireless Sensor Networks

Download or read book On Distributed Estimation for Power Constrained Wireless Sensor Networks written by Mojtaba Shirazi and published by . This book was released on 2019 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: We derive the MSE corresponding to the LMMSE estimator at the FC, and explore the best power scheduling scheme among sensors and CHs, to minimize the MSE subject to network transmit power constraint. (iii) Assuming the DES of a Gaussian source with additive and multiplicative Gaussian observation noises, we derive different estimators such as minimum mean square error (MMSE), maximum-a-posteriori (MAP), and different lower bounds on MSE, such as Bayesian Cramér-Rao bound (BCRB),Weiss-Weinstein bound (WWB).We characterize the scenarios that multiplicative noise improves the DES performance (we call the phenomena as enhancement mode (EM) of multiplicative noise), when we assume the variance of multiplicative noise is known/unknown, and also when the observations are quantized/unquantized.

Book Distributed Fusion Estimation for Sensor Networks with Communication Constraints

Download or read book Distributed Fusion Estimation for Sensor Networks with Communication Constraints written by Wen-An Zhang and published by Springer. This book was released on 2016-05-27 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically presents energy-efficient robust fusion estimation methods to achieve thorough and comprehensive results in the context of network-based fusion estimation. It summarizes recent findings on fusion estimation with communication constraints; several novel energy-efficient and robust design methods for dealing with energy constraints and network-induced uncertainties are presented, such as delays, packet losses, and asynchronous information... All the results are presented as algorithms, which are convenient for practical applications.

Book Distributed Optimization  Advances in Theories  Methods  and Applications

Download or read book Distributed Optimization Advances in Theories Methods and Applications written by Huaqing Li and published by Springer Nature. This book was released on 2020-08-04 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.

Book Distributed Network Structure Estimation Using Consensus Methods

Download or read book Distributed Network Structure Estimation Using Consensus Methods written by Sai Zhang and published by Springer Nature. This book was released on 2022-05-31 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.

Book Distributed Consensus Algorithms for Wireless Sensor Networks  Convergence Analysis and Optimization

Download or read book Distributed Consensus Algorithms for Wireless Sensor Networks Convergence Analysis and Optimization written by Silvana Silva Pereira and published by . This book was released on 2014 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wireless sensor networks are developed to monitor areas of interest with the purpose of estimating physical parameters or/and detecting emergency events in a variety of military and civil applications. A wireless sensor network can be seen as a distributed computer, where spatially deployed sensor nodes are in charge of gathering measurements from the environment to compute a given function. The research areas for wireless sensor networks extend from the design of small, reliable hardware to low-complexity algorithms and energy saving communication protocols. Distributed consensus algorithms are low-complexity iterative schemes that have received increased attention in different fields due to a wide range of applications, where neighboring nodes communicate locally to compute the average of an initial set of measurements. Energy is a scarce resource in wireless sensor networks and therefore, the convergence of consensus algorithms, characterized by the total number of iterations until reaching a steady-state value, is an important topic of study. This PhD thesis addresses the problem of convergence and optimization of distributed consensus algorithms for the estimation of parameters in wireless sensor networks. The impact of quantization noise in the convergence is studied in networks with fixed topologies and symmetric communication links. In particular, a new scheme including quantization is proposed, whose mean square error with respect to the average consensus converges. The limit of the mean square error admits a closed-form expression and an upper bound for this limit depending on general network parameters is also derived. The convergence of consensus algorithms in networks with random topology is studied focusing particularly on convergence in expectation, mean square convergence and almost sure convergence. Closed-form expressions useful to minimize the convergence time of the algorithm are derived from the analysis. Regarding random networks with asymmetric links, closed-form expressions are provided for the mean square error of the state assuming equally probable uniform link weights, and mean square convergence to the statistical mean of the initial measurements is shown. Moreover, an upper bound for the mean square error is derived for the case of different probabilities of connection for the links, and a practical scheme with randomized transmission power exhibiting an improved performance in terms of energy consumption with respect to a fixed network with the same consumption on average is proposed. The mean square error expressions derived provide a means to characterize the deviation of the state vector with respect to the initial average when the instantaneous links are asymmetric. A useful criterion to minimize the convergence time in random networks with spatially correlated links is considered, establishing a sufficient condition for almost sure convergence to the consensus space. This criterion, valid also for topologies with spatially independent links, is based on the spectral radius of a positive semidefinite matrix for which we derive closed-form expressions assuming uniform link weights. The minimization of this spectral radius is a convex optimization problem and therefore, the optimum link weights minimizing the convergence time can be computed efficiently. The expressions derived are general and apply not only to random networks with instantaneous directed topologies but also to random networks with instantaneous undirected topologies. Furthermore, the general expressions can be particularized to obtain known protocols found in literature, showing that they can be seen as particular cases of the expressions derived in this thesis.

Book System Design in Wireless Sensor Networks for Parameter Estimation and Dynamic Event Region Detection

Download or read book System Design in Wireless Sensor Networks for Parameter Estimation and Dynamic Event Region Detection written by Tao Wu and published by . This book was released on 2013 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, the practical system design issues are studied for statistical inference in wireless sensor networks (WSNs). First, the problem of distributed estimation of an unknown parameter corrupted by noise is studied. Imperfect data transmission between local sensors and a fusion center is considered and modeled as a Rayleigh fading channel. The conventional maximum likelihood estimation usually involves high computational complexity and is not suitable for resource-constrained WSNs. Efficient estimators are designed for different receiver models and their efficiency is shown both theoretically and through experiments. The distributed parameter estimation performance also depends on the selection of local quantization thresholds. Therefore, different threshold schemes are investigated under the minimax criterion. Two quantizer structures (sinusoid function and raised cosine function) are proposed. Simulation results show that the simple sinusoid structure outperforms the intuitive uniform structure and the raised cosine structure achieves near optimal performance. The problem of dynamic event region detection in WSNs is studied next. To provide detection results at each time step, a distributed event region tracking algorithm is proposed. The system dynamics (modeled by a dynamic Markov random field) and information collected from neighbors are used to predict the underlying hypothesis at each sensor node and its local observation is used for update. The performance of the proposed algorithm is analyzed both theoretically and through simulations. Detecting and reconstructing critical dynamic event regions at a control center is an important application of bandwidth-limited WSNs. This problem is studied with emphasis on adaptive bandwidth allocation for sensor data transmission. To meet the stringent bandwidth and energy constraints in WSNs, only a few selected sensors are allowed to transmit compressed data to a control center. To reconstruct and track the field state map at each time step, a processing framework including sensor selection, local and central processing is proposed. Adaptive bandwidth allocation is obtained by solving a conditional entropy based optimization problem. The overall communication costs in terms of bandwidth and energy consumption of the proposed framework are evaluated by considering all possible overheads in a practical communication protocol.

Book Consensus Algorithms and Distributed Structure Estimation in Wireless Sensor Networks

Download or read book Consensus Algorithms and Distributed Structure Estimation in Wireless Sensor Networks written by Sai Zhang (Electrical engineer) and published by . This book was released on 2017 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed wireless sensor networks (WSNs) have attracted researchers recently due to their advantages such as low power consumption, scalability and robustness to link failures. In sensor networks with no fusion center, consensus is a process where all the sensors in the network achieve global agreement using only local transmissions. In this dissertation, several consensus and consensus-based algorithms in WSNs are studied. Firstly, a distributed consensus algorithm for estimating the maximum and minimum value of the initial measurements in a sensor network in the presence of communication noise is proposed. In the proposed algorithm, a soft-max approximation together with a non-linear average consensus algorithm is used. A design parameter controls the trade-off between the soft-max error and convergence speed. An analysis of this trade-off gives guidelines towards how to choose the design parameter for the max estimate. It is also shown that if some prior knowledge of the initial measurements is available, the consensus process can be accelerated.Secondly, a distributed system size estimation algorithm is proposed. The proposed algorithm is based on distributed average consensus and L2 norm estimation. Different sources of error are explicitly discussed, and the distribution of the final estimate is derived. The CRBs for system size estimator with average and max consensus strategies are also considered, and different consensus based system size estimation approaches are compared.Then, a consensus-based network center and radius estimation algorithm is described. The center localization problem is formulated as a convex optimization problem with a summation form by using soft-max approximation with exponential functions. Distributed optimization methods such as stochastic gradient descent and diffusion adaptation are used to estimate the center. Then, max consensus is used to compute the radius of the network area. Finally, two average consensus based distributed estimation algorithms are introduced: distributed degree distribution estimation algorithm and algorithm for tracking the dynamics of the desired parameter. Simulation results for all proposed algorithms are provided.

Book Distributed Compression Estimation Using Wireless Sensor Networks

Download or read book Distributed Compression Estimation Using Wireless Sensor Networks written by and published by . This book was released on 2006 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we consider deterministic parameter estimation problems. We study the intertwining of quantization and estimation in general and shows particular results in 1) low SNR situations where the noise standard deviation is in the order of the parameter's dynamic range; and 2) universal estimation when the sensor data and noise model are unknown. The goal is to understand how the signal processing capability of a WSN scales up with its size, and to develop robust distributed signal processing algorithms and protocols with low bandwidth requirement and optimal performance. We show that for universal estimation in low signal to noise ratio (SNR), the universal distributed estimators not only exist but achieve performance close to that of estimators based on the original (un-quantized) observations. We also generalize these results a Bayesian estimation framework with a particular application to state estimation of dynamic stochastic processes.

Book Wireless Sensor Networks

Download or read book Wireless Sensor Networks written by Ananthram Swami and published by John Wiley & Sons. This book was released on 2007-10-24 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wireless sensor network (WSN) uses a number of autonomous devices to cooperatively monitor physical or environmental conditions via a wireless network. Since its military beginnings as a means of battlefield surveillance, practical use of this technology has extended to a range of civilian applications including environmental monitoring, natural disaster prediction and relief, health monitoring and fire detection. Technological advancements, coupled with lowering costs, suggest that wireless sensor networks will have a significant impact on 21st century life. The design of wireless sensor networks requires consideration for several disciplines such as distributed signal processing, communications and cross-layer design. Wireless Sensor Networks: Signal Processing and Communications focuses on the theoretical aspects of wireless sensor networks and offers readers signal processing and communication perspectives on the design of large-scale networks. It explains state-of-the-art design theories and techniques to readers and places emphasis on the fundamental properties of large-scale sensor networks. Wireless Sensor Networks: Signal Processing and Communications : Approaches WSNs from a new angle – distributed signal processing, communication algorithms and novel cross-layer design paradigms. Applies ideas and illustrations from classical theory to an emerging field of WSN applications. Presents important analytical tools for use in the design of application-specific WSNs. Wireless Sensor Networks will be of use to signal processing and communications researchers and practitioners in applying classical theory to network design. It identifies research directions for senior undergraduate and graduate students and offers a rich bibliography for further reading and investigation.

Book Distributed Estimation in Sensor Networks with Modeling Uncertainty

Download or read book Distributed Estimation in Sensor Networks with Modeling Uncertainty written by Qing Zhou and published by . This book was released on 2013 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: A major issue in distributed wireless sensor networks (WSNs) is the design of efficient distributed algorithms for network-wide dissemination of information acquired by individual sensors, where each sensor, by itself, is unable to access enough data for reliable decision making. Without a centralized fusion center, network-wide reliable inferencing can be accomplished by recovering meaningful global statistics at each sensor through iterative inter-sensor message passing. In this dissertation, we first consider the problem of distributed estimation of an unknown deterministic scalar parameter (the target signal) in a WSN, where each sensor receives a single snapshot of the field. An iterative distributed least-squares (DLS) algorithm is investigated with and without the consideration of node failures. In particular, without sensor node failures it is shown that every instantiation of the DLS algorithm converges, i.e., consensus is reached among the sensors, with the limiting agreement value being the centralized least-squares estimate. With node failures during the iterative exchange process, the convergence of the DLS algorithm is still guaranteed; however, an error exists be- tween the limiting agreement value and the centralized least-squares estimate. In order to reduce this error, a modified DLS scheme, the M-DLS, is provided. The M-DLS algorithm involves an additional weight compensation step, in which a sensor performs a one-time weight compensation procedure whenever it detects the failure of a neighbor. Through analytical arguments and simulations, it is shown that the M-DLS algorithm leads to a smaller error than the DLS algorithm, where the magnitude of the improvement dependents on the network topology. We then investigate the case when the observation or sensing mode is only partially known at the corresponding nodes, perhaps, due to their limited sensing capabilities or other unpredictable physical factors. Specifically, it is assumed that the observation validity at a node switches stochastically between two modes, with mode I corresponding to the desired signal plus noise observation mode (a valid observation), and mode II corresponding to pure noise with no signal information (an invalid observation). With no prior information on the local sensing modes (valid or invalid), we introduce a learning-based distributed estimation procedure, the mixed detection-estimation (MDE) algorithm, based on closed-loop interactions between the iterative distributed mode learning and the target estimation. The online learning (or sensing mode detection) step re-assesses the validity of the local observations at each iteration, thus refining the ongoing estimation update process. The convergence of the MDE algorithm is established analytically, and the asymptotic performance analysis studies shows that, in the high signal-to-noise ratio (SNR) regime, the MDE estimation error converges to that of an ideal (centralized) estimator with perfect information about the node sensing modes. This is in contrast with the estimation performance of a naive average consensus based distributed estimator (with no mode learning), whose estimation error blows up with an increasing SNR. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149566

Book Data Fusion in Wireless Sensor Networks

Download or read book Data Fusion in Wireless Sensor Networks written by Domenico Ciuonzo and published by Institution of Engineering and Technology. This book was released on 2019-03-11 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of data fusion has been expanding in recent years through the incorporation of pervasive applications, where the physical infrastructure is coupled with information and communication technologies, such as wireless sensor networks for the internet of things (IoT), e-health and Industry 4.0. In this edited reference, the authors provide advanced tools for the design, analysis and implementation of inference algorithms in wireless sensor networks.