Download or read book Dissociative Recombination of Molecular Ions with Electrons written by Steven L. Guberman and published by Springer. This book was released on 2012-10-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dissociative Recombination of Molecular Ions with Electrons is a comprehensive collection of refereed papers describing the latest developments in dissociative recombination research. The papers are written by the leading researchers in the field. The topics covered include the use of microwave afterglows, merged beams and storage rings to measure rate coefficients and to identify the products and their yields. The molecules studied range in size from the smallest, H2+, to bovine insulin ions. The theoretical papers cover the important role of Rydberg states and the use of wave packets and quantum defect theory to deduce cross sections, rate constants and quantum yields. Several theoretical and experimental papers address the controversial topic of H3+ dissociative recombination and its importance in the interstellar medium. Dissociative recombination studies of other molecular ions in the interstellar medium and in cometary and planetary atmospheres are covered. Ionization is an important competitive process to dissociative recombination and its competition with predissociation and its role in the reverse process of the association of neutral species is presented. Dissociative attachment, in which an electron attaches to a neutral molecule, has many similarities to dissociative recombination. The topics covered include the accurate calculation of electron affinities, attachment to molecules, clusters, and to species absorbed on solid surfaces and electron scattering by a molecular anion.
Download or read book Dissociative Recombination written by Bertrand R. Rowe and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a NATO ARW held in Saint Jacut de la Mer, Brittany, France, May 3-8, 1992
Download or read book Fundamentals of Ionized Gases written by Boris M. Smirnov and published by John Wiley & Sons. This book was released on 2012-09-19 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and readily accessible work for studying the physics of ionized gases, based on "Physics of Ionized Gases". The focus remains on fundamentals rather than on the details required for interesting but difficult applications, such as magnetic confinement fusion, or the phenomena that occur with extremely high-intensity short-pulse lasers. However, this new work benefits from much rearranging of the subject matter within each topic, resulting in a more coherent structure. There are also some significant additions, many of which relate to clusters, while other enlarged sections include plasmas in the atmosphere and their applications. In each case, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas can then be treated with comprehensive clarity. The work is rounded off with appendices containing information and data of great importance and relevance that are not easily found in other books. Valuable reading for graduate and PhD physics students, and a reference for researchers in low-temperature ionized gases-plasma processing, edge region fusion plasma physics, and atmospheric plasmas.
Download or read book Physics of Ionized Gases written by Boris M. Smirnov and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.
Download or read book Collisions of Electrons with Atoms and Molecules written by G.F. Drukarev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.
Download or read book Photoionization and Photodetachment written by Cheuk-Yiu Ng and published by World Scientific. This book was released on 2000 with total page 1415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Owing to the advances of vacuum ultraviolet and ultrafast lasers and third generation synchrotron sources, the research on photoionization, photoelectrons, and photodetachment has gained much vitality in recent years. These new light sources, together with ingenious experimental techniques, such as the coincidence imaging, molecular beam, pulsed field ionization photoelectron, mass-analyzed threshold ion, and pulsed field ion pair schemes, have allowed spectroscopic, dynamic, and energetic studies of gaseous species to a new level of detail and accuracy. Profitable applications of these methods to liquids are emerging.This invaluable two-volume review consists of twenty-two chapters, focusing on recent developments in photoionization and photodetachment studies of atoms; molecules, transient species, clusters, and liquids.
Download or read book Proceedings written by and published by . This book was released on 1970 with total page 1532 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Cluster Ions and Van Der Waals Molecules written by B.M. Smirnov and published by CRC Press. This book was released on 1992-03-20 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smirnov (plasma chemistry, Institute of High Temperatures, Moscow) presents a comprehensive introduction to cluster ions and Van der Waals molecules for graduates and researchers in chemistry. He discusses the current ideas on the operant physics and chemistry, and reports numerical data on the parameters of the entities and processes involving them. First published in Russian in 1983. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book NASA Technical Note written by and published by . This book was released on 1961 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Plasma Chemistry written by Alexander Fridman and published by Cambridge University Press. This book was released on 2008-05-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Download or read book Atomic and Molecular Processes written by D.R. Bates and published by Elsevier. This book was released on 2016-06-03 with total page 921 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic and Molecular Processes focuses on radiative and collisional processes involving atoms or molecules, including photoionization, elastic and inelastic scattering of electrons, energy loss by slow electrons, excitation, ionization, detachment, charge transfer, elastic scattering, and chemical reactions. The selection first offers information on forbidden and allowed transitions, including forbidden transitions in diatomic molecular spectra; forbidden transitions in crystals; calculations of atomic line strengths; and measurements of atomic transition probabilities. The book also ponders on photoionization processes, photodetachment, and high temperature shock waves. The manuscript elaborates on electronic and ionic recombination, elastic scattering of electrons, and the motions of slow electrons in gases. The book also evaluates the theory of excitation and ionization by electron impact; measurement of collisional excitation and ionization cross sections; and spectral line broadening in plasmas. The selection is a dependable reference for readers interested in atomic and molecular processes.
Download or read book Atomic and Molecular Collision Theory written by Franco A. Gianturco and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until recently, the field of atomic and molecular collisions was left to a handful of practitioners who essentially explored it as a branch of atomic physics and gathered their experimental re sults mainly from spectroscopy measurements in bulk. But in the past ten years or so, all of this has dramatically changed, and we are now witnessing the rapid growth of a large body of research that encompasses the simplest atoms as well as the largest mole cules, that looks at a wide variety of phenomena well outside purely spectroscopic observation, and that finds applications in an unexpectedly broad range of physico-chemical and physical pro cesses. The latter are in turn surprisingly close to very important sectors of applied research, such as the modeling of molecular lasers, the study of isotope separation techniques, and the energy losses in confined plasmas, to mention just a few of them. As a consequence of this healthy state of affairs, greatly diversified research pathways have developed; however, their specialized problems are increasingly at risk of being viewed in isolation, although they are part of a major and extended branch of physics or chemistry. This is particularly true when it comes to the theory of this work -- where well-established methods and models of one subfield are practically unknown to researchers in other subfields -- and, consequently, the danger of wasteful duplication arising is quite real.
Download or read book Weather and Climate on Planets written by K Y Kondratyev and published by Elsevier. This book was released on 2013-10-22 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weather and Climate on Planets discusses the problems of the meteorology of planets. Planetary meteorology is the study of the regularities of the atmospheres and their thermal regime and dynamics, specifically the properties of the planetary surfaces and the specific features of the interactions between the atmospheres and surfaces. This book contains four chapters and begins with an overview of origin and evolution of the solar system and planetary atmospheres. The introductory chapter describes some basic characteristics of planetary atmospheres, laboratory and numerical modeling of the atmospheric circulation, and the application of remote sounding. The remaining three chapters examine the weather, climate, and other meteorological aspects of planet Venus, Mars, and Jupiter. This book will be of value to meteorologists, astronomers, researchers, and students.
Download or read book Advances in Atomic Molecular and Optical Physics written by and published by Elsevier. This book was released on 1994-01-04 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.
Download or read book Principles of Plasma Discharges and Materials Processing written by Michael A. Lieberman and published by John Wiley & Sons. This book was released on 2024-08-28 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this industry classic on the principles of plasma processing Plasma-based technology and materials processes have been central to the revolution of the last half-century in micro- and nano-electronics. From anisotropic plasma etching on microprocessors, memory, and analog chips, to plasma deposition for creating solar panels and flat-panel displays, plasma-based materials processes have reached huge areas of technology. As key technologies scale down in size from the nano- to the atomic level, further developments in plasma materials processing will only become more essential. Principles of Plasma Discharges and Materials Processing is the foundational introduction to the subject. It offers detailed information and procedures for designing plasma-based equipment and analyzing plasma-based processes, with an emphasis on the abiding fundamentals. Now fully updated to reflect the latest research and data, it promises to continue as an indispensable resource for graduate students and industry professionals in a myriad of technological fields. Readers of the third edition of Principles of Plasma Discharges and Materials Processing will also find: Extensive figures and tables to facilitate understanding A new chapter covering the recent development of processes involving high-pressure capacitive discharges New subsections on discharge and processing chemistry, physics, and diagnostics Principles of Plasma Discharges and Materials Processing is ideal for professionals and process engineers in the field of plasma-assisted materials processing with experience in the field of science or engineering. It is the premiere world-wide basic text for graduate courses in the field.
Download or read book The Lightning Flash written by Vernon Cooray and published by IET. This book was released on 2003 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book provides the reader with a thorough background in almost every aspect of lightning and its impact on electrical and electronic equipment. The contents range from basic discharge processes in air through transient electromagnetic field generation and interaction with overhead lines and underground cables, to lightning protection and testing techniques. This book is of value to anyone designing, installing or commissioning equipment which needs to be secured against lightning strikes, as well as being a sound introduction to research students working in the field.
Download or read book Electron Molecule Collisions written by Isao Shimamura and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.