EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Coarse Grained Simulation and Turbulent Mixing

Download or read book Coarse Grained Simulation and Turbulent Mixing written by Fenando F. Grinstein and published by Cambridge University Press. This book was released on 2016-06-30 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.

Book Large Eddy Simulations of Turbulence

Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Book Modeling and Simulation of Turbulent Mixing and Reaction

Download or read book Modeling and Simulation of Turbulent Mixing and Reaction written by Daniel Livescu and published by Springer Nature. This book was released on 2020-02-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

Book Numerical Simulation of a Spatially developing  Forced  Plane Mixing Layer

Download or read book Numerical Simulation of a Spatially developing Forced Plane Mixing Layer written by P. S. Lowery (Reynolds, W. C.) and published by . This book was released on 1986 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The spatial and temporal development of a forced, incompressible, plane mixing layer is simulated in this work. The full Navier-Stokes equations are solved without the imposition of a turbulence model. Therefore, the Reynolds.

Book Direct Numerical Simulations of Compressible Turbulent Boundary Layers Using Hybrid Methods

Download or read book Direct Numerical Simulations of Compressible Turbulent Boundary Layers Using Hybrid Methods written by Debra J. Olejniczak and published by . This book was released on 1998 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Hybrid RANS LES Method for Compressible Mixing Layer Simulations

Download or read book Development of a Hybrid RANS LES Method for Compressible Mixing Layer Simulations written by Nicholas J. Georgiadis and published by . This book was released on 2001 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Compressibility  Turbulence and High Speed Flow

Download or read book Compressibility Turbulence and High Speed Flow written by Thomas B. Gatski and published by Academic Press. This book was released on 2013-03-05 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. An introduction to current techniques in compressible turbulent flow analysis An approach that enables engineers to identify and solve complex compressible flow challenges Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Current strategies focusing on compressible flow control

Book Direct Simulation of High speed Mixing Layers

Download or read book Direct Simulation of High speed Mixing Layers written by and published by . This book was released on 1992 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Direct Numerical Simulation of Turbulent Mixing Layers

Download or read book Direct Numerical Simulation of Turbulent Mixing Layers written by Amid Ansari and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of Two dimensional Spatially developing Mixing Layers

Download or read book Numerical Simulation of Two dimensional Spatially developing Mixing Layers written by R. V. Wilson and published by . This book was released on 1994 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional, incompressible, spatially developing mixing layer simulations are performed at Re = 10 2 and 10 4 with two classes of perturbations applied at the inlet boundary; (1) combinations of discrete modes from linear stability theory, and (2) a broad spectrum of modes derived from experimentally measured velocity spectra. The effect of the type and strength of inlet perturbations on vortex dynamics and time-averaged properties are explored. Two-point spatial velocity and autocorrelations are used to estimate the size and lifetime of the resulting coherent structures and to explore possible feedback effects. The computed time-averaged properties such as mean velocity profiles, turbulent statistics, and spread rates show good agreement with experimentally measured values. It is shown that by forcing with a broad spectrum of modes derived from an experimental energy spectrum many experimentally observed phenomena can be reproduced by a 2-D simulation. The strength of the forcing merely affected the length required for the dominant coherent structures to become fully-developed. Thus intensities comparable to those of the background turbulence in many wind tunnel experiments produced the same results, given sufficient simulation length. Mixing layers, Numerical simulation, Spatial simulation.

Book Simulation and Modeling of Turbulent Flows

Download or read book Simulation and Modeling of Turbulent Flows written by T. B. Gatski and published by Oxford University Press, USA. This book was released on 1996 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

Book Direct Numerical Simulation of a Perturbed  Turbulent Mixing Layer

Download or read book Direct Numerical Simulation of a Perturbed Turbulent Mixing Layer written by J. J. Riley and published by . This book was released on 1980 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Flow Computation

    Book Details:
  • Author : D. Drikakis
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-11
  • ISBN : 0306484218
  • Pages : 390 pages

Download or read book Turbulent Flow Computation written by D. Drikakis and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.

Book Simulation and Modeling of Compressible Turbulent Mixing Layer

Download or read book Simulation and Modeling of Compressible Turbulent Mixing Layer written by Seyed Navid Samadi Vaghefi and published by . This book was released on 2014 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct numerical simulations (DNS) of compressible turbulent mixing layer are performed for subsonic to supersonic Mach numbers. Each simulation achieves the self-similar state and it is shown that the turbulent statistics during this state agree well with previous numerical and experimental works. The DNS data is used to extract the physics of compressible turbulence and to perform a priori analysis for subgrid scale (SGS) closures. The flow dynamics in proximity of the turbulent/non-turbulent interface (TNTI), separating the turbulent and the irrotational regions, is analyzed using the DNS data. This interface is detected by using a certain threshold for the vorticity norm. The conditional flow statistics based on the normal distance from the TNTI are compared for different convective Mach numbers. It is shown that the thickness of the interface layer is approximately one Taylor length scale for both incompressible and compressible mixing layers, and the flow dynamics in this layer differs from deep inside the turbulent region. Various terms in the transport equations for total kinetic energy, turbulent kinetic energy, and vorticity are examined in order to better understand the transport mechanisms across the TNTI in compressible flows. The DNS data is also employed to analyze the local flow topology in compressible mixing layers using the invariants of the velocity gradient tensor. The topological and dissipating behaviors of the flow are analyzed in two different regions: near the TNTI, and inside the turbulent region. It is found that the distribution of various flow topologies in regions close to the TNTI differs from inside the turbulent region, and in these regions the most probable topologies are non-focal. The occurrence probability of different flow topologies conditioned by the dilatation level is presented and it is shown that the structures in the locally compressed regions tend to have stable topologies while in locally expanded regions the unstable topologies are prevalent. In order to better understand the behavior of different flow topologies, the probability distributions of vorticity norm, dissipation, and rate of stretching are analyzed in incompressible, compressed and expanded regions. The DNS data is also used to perform a priori analysis for subgrid scale (SGS) viscous and scalar closures. Several models for each closure are tested and effects of filter width, compressibility level, and Schmidt number on their performance are studied. A new model for SGS viscous dissipation is proposed based on the scaling of SGS kinetic energy. The proposed model yields the best prediction of SGS viscous dissipation among the considered models for filter widths corresponding to the inertial range. For the range of Mach numbers and Schmidt numbers studied in this work, the SGS scalar dissipation model based on proportionality of turbulent time scale and scalar mixing time scale produces the best results in the filter widths corresponding to the inertial subrange. For both viscous and scalar SGS dissipation models, two dynamic approaches are used to compute the model coefficient. It is shown that if the dynamic procedure based on global equilibrium of dissipation and production is employed, more accurate results are generated compared to the conventional dynamic method based on test-filtering.

Book Spatial Direct Numerical Simulation of Compressible Boundary Layer Flow

Download or read book Spatial Direct Numerical Simulation of Compressible Boundary Layer Flow written by Bono Wasistho and published by . This book was released on 1997 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: