EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Direct Numerical Simulation of Laminar and Turbulent Flows in a Diverging Channel

Download or read book Direct Numerical Simulation of Laminar and Turbulent Flows in a Diverging Channel written by K. Dang Tran and published by . This book was released on 1991 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Direct Numerical Simulation of Laminar and Turbulent Flow in a Channel with Complex  Time dependent Wall Geometries

Download or read book Direct Numerical Simulation of Laminar and Turbulent Flow in a Channel with Complex Time dependent Wall Geometries written by Henry Andrew Carlson and published by . This book was released on 1995 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Flows

Download or read book Turbulent Flows written by G. Biswas and published by CRC Press. This book was released on 2002 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book allows readers to tackle the challenges of turbulent flow problems with confidence. It covers the fundamentals of turbulence, various modeling approaches, and experimental studies. The fundamentals section includes isotropic turbulence and anistropic turbulence, turbulent flow dynamics, free shear layers, turbulent boundary layers and plumes. The modeling section focuses on topics such as eddy viscosity models, standard K-E Models, Direct Numerical Stimulation, Large Eddy Simulation, and their applications. The measurement of turbulent fluctuations experiments in isothermal and stratified turbulent flows are explored in the experimental methods section. Special topics include modeling of near wall turbulent flows, compressible turbulent flows, and more.

Book Turbulent Fluid Flow

    Book Details:
  • Author : Peter S. Bernard
  • Publisher : John Wiley & Sons
  • Release : 2018-12-14
  • ISBN : 1119106230
  • Pages : 360 pages

Download or read book Turbulent Fluid Flow written by Peter S. Bernard and published by John Wiley & Sons. This book was released on 2018-12-14 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the essential information needed to model and compute turbulent flows and interpret experiments and numerical simulations Turbulent Fluid Flow offers an authoritative resource to the theories and models encountered in the field of turbulent flow. In this book, the author – a noted expert on the subject – creates a complete picture of the essential information needed for engineers and scientists to carry out turbulent flow studies. This important guide puts the focus on the essential aspects of the subject – including modeling, simulation and the interpretation of experimental data - that fit into the basic needs of engineers that work with turbulent flows in technological design and innovation. Turbulent Fluid Flow offers the basic information that underpins the most recent models and techniques that are currently used to solve turbulent flow challenges. The book provides careful explanations, many supporting figures and detailed mathematical calculations that enable the reader to derive a clear understanding of turbulent fluid flow. This vital resource: Offers a clear explanation to the models and techniques currently used to solve turbulent flow problems Provides an up-to-date account of recent experimental and numerical studies probing the physics of canonical turbulent flows Gives a self-contained treatment of the essential topics in the field of turbulence Puts the focus on the connection between the subject matter and the goals of fluids engineering Comes with a detailed syllabus and a solutions manual containing MATLAB codes, available on a password-protected companion website Written for fluids engineers, physicists, applied mathematicians and graduate students in mechanical, aerospace and civil engineering, Turbulent Fluid Flow contains an authoritative resource to the information needed to interpret experiments and carry out turbulent flow studies.

Book New Algorithms for the Direct Numerical Simulation of Turbulent Flows Past Compliant Bodies and the Optimization of Highly Constrained PDE Systems

Download or read book New Algorithms for the Direct Numerical Simulation of Turbulent Flows Past Compliant Bodies and the Optimization of Highly Constrained PDE Systems written by Anish Avinash Karandikar and published by . This book was released on 2008 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work develops an efficient and accurate new method for direct numerical simulation of laminar and turbulent flow past a circular cylinder with a deformable (compliant) surface. It studies the interaction of the incompressible flow with the compliant cylinder. From the outset, this is defined as an optimization problem, in which we seek to minimize aeroacoustic noise generated by dipole sound sources on the compliant surface at low Mach numbers. We build on a unique method developed in our lab for simulating turbulent flow in a channel with compliant walls. This method is accurate and efficient for large surface deformations. We adapt this method for the cylindrical polar coordinate system to study flow past a compliant cylinder. In this method, a time-dependent coordinate transformation is used to map the deformed flow domain to a regular computational domain. The governing Navier Stokes equations are formulated in the cylindrical polar form and not the contravariant form, as the latter is computationally expensive to simulate. The compliant surface is modeled by a simple spring-mass-damper system. As surface compliance is increased, a decrease in the peak lift coefficient for the compliant cylinder is observed both in the laminar 2D case at Re = 80, as well as the turbulent 3D case at Re = 300. On the other hand, the frequency of vortex shedding and the time-average drag both increase with surface compliance. This work also develops a new method for optimizing highly-constrained PDE systems by splitting up the governing equations into parallel linear programs, thus achieving scalability. It explores optimization of a single-phase fluid heat exchanger to minimize the power required to drive coolant through it by appropriately adjusting the channel width or channel porosity. The Stokes flow in the heat exchanger is modeled as a resistor network, while the flow rate and pressures in the flow are analogous to currents and voltages in the resistor network. The method developed and demonstrated on the resistor network problem extends naturally to the optimization of the variable channel width/porosity distribution in the heat exchanger model.

Book Direct Numerical Simulation of Turbulent Flow in a Curved Channel

Download or read book Direct Numerical Simulation of Turbulent Flow in a Curved Channel written by Ravindranath Lanka and published by . This book was released on 2000 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computation of Laminar and Turbulent Flow in Curved Ducts  Channels  and Pipes Using the Navier Stokes Equations

Download or read book Computation of Laminar and Turbulent Flow in Curved Ducts Channels and Pipes Using the Navier Stokes Equations written by R. C. Buggeln and published by . This book was released on 1980 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both laminar and turbulent flows in strongly curved ducts, channels, and pipes are studied by numerical methods. The study concentrates on the curved square-duct geometry and flow conditions for which detailed measurements have been obtained recently by Taylor, Whitelaw, and Yianneskis. The solution methodology encompasses solution of the compressible ensemble-averaged Navier-Stokes equations at low Mach number using a split linearized block implicit (LBI) scheme, and rapid convergence on the order of 80 noniterative time steps is obtained. The treatment of turbulent flows includes resolution of the viscous sublayer region. A series of solutions for both laminar and turbulent flow and for both two- and three-dimensional geometries of the same curvature are presented. The accuracy of these solutions is explored by mesh refinement and by comparison with experiment. In summary, good qualitative and reasonable quantitative agreement between solution and experiment is obtained. Collectively, this sequence of results serves to clarify the physical structure of these flows and hence how grid selection procedures might be adjusted to improve the numerical accuracy and experimental agreement. For a three-dimensional flow of considerable complexity, the relatively good agreement with experiment obtained for the turbulent flow case despite a coarse grid must be regarded as encouraging. (Author).

Book Advanced Turbulent Flow Computations

Download or read book Advanced Turbulent Flow Computations written by Roger Peyret and published by Springer. This book was released on 2014-05-04 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.

Book Direct Numerical Simulations  DNS  of Turbulent Flows in an Undulating Channel

Download or read book Direct Numerical Simulations DNS of Turbulent Flows in an Undulating Channel written by Luo Wang and published by . This book was released on 2007 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: In summary, in this work we have developed and successfully tested all the necessary ingredients for a successful simulation of viscoelastic turbulent flow in a wavy channel. It is only a matter of time in future work to address the fine tuning of parameters such as the diffusivity, time integration scheme, etc. in order to successfully perform the very large scale simulations needed to reproduce viscoelastic turbulent flows in a wavy channel flow geometry.

Book Direct Numerical Simulation of Curved Turbulent Channel Flow

Download or read book Direct Numerical Simulation of Curved Turbulent Channel Flow written by Robert deLancey Moser and published by . This book was released on 1984 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book DNS of Wall Bounded Turbulent Flows

Download or read book DNS of Wall Bounded Turbulent Flows written by Tapan K. Sengupta and published by Springer. This book was released on 2018-06-07 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights by careful documentation of developments what led to tracking the growth of deterministic disturbances inside the shear layer from receptivity to fully developed turbulent flow stages. Associated theoretical and numerical developments are addressed from basic level so that an uninitiated reader can also follow the materials which lead to the solution of a long-standing problem. Solving Navier-Stokes equation by direct numerical simulation (DNS) from the first principle has been considered as one of the most challenging problems of understanding what causes transition to turbulence. Therefore, this book is a very useful addition to advanced CFD and advanced fluid mechanics courses.

Book Direct Numerical Simulation of Turbulent Flow Over a Backward facing Step

Download or read book Direct Numerical Simulation of Turbulent Flow Over a Backward facing Step written by Michal Andrzej Kopera and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A three-dimensional, turbulent flow in a channel with a sudden expansion was studied by direct numerical simulation of the incompressible Navier-Stokes equations. The objective of this study was to provide statistical data of backwardfacing step flow for turbulence modelling. Additionally, analysis of the statistical and dynamical properties of the flow is performed. The Reynolds number of the main simulation was Reh = 9000, based on the step height and mean inlet velocity, with the expansion ratio ER = 2:0. The discretisation is performed using the spectral/hp element method with stiffly-stable velocity correction scheme for time integration. The inlet boundary condition is a fully turbulent velocity and pressure field regenerated from a plane downstream of the inlet. A constant flowrate was ensured by applying Stokes flow correction in the inlet regeneration area. Time and spanwise averaged results revealed, apart from the primary recirculation bubble, secondary and tertiary corner eddies. Streamlines show an additional small eddy at the downstream tip of the secondary corner eddy, with the same circulation direction as the secondary vortex. The analysis of the 3D, timeonly average shows the wavy spanwise structure of both primary and secondary recirculation bubble, that results in spanwise variations of the mean reattachment location. The visualisation of spanwise averaged pressure uctuations and streamwise velocity showed that the interaction of vortices with the recirculation bubble is responsible for the apping of the reattachment position. The characteristic frequency St = 0:078 was found. The analysis of small-scale energy transfer was performed to reveal large backscatter regions in strong Reynolds stress areas in the mixing layer. High correlation of small-scale transfer with non-linear interaction of large-scale velocity and small-scale vorticity was found. The data of the flow fields was archived. It contains the averages for velocities, pressure and Reynolds stress tensor, as well as 3D instantaneous pressure and velocity history.

Book Numerical Methods in Turbulence Simulation

Download or read book Numerical Methods in Turbulence Simulation written by Robert Moser and published by Elsevier. This book was released on 2022-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods in Turbulence Simulation provides detailed specifications of the numerical methods needed to solve important problems in turbulence simulation. Numerical simulation of turbulent fluid flows is challenging because of the range of space and time scales that must be represented. This book provides explanations of the numerical error and stability characteristics of numerical techniques, along with treatments of the additional numerical challenges that arise in large eddy simulations. Chapters are written as tutorials by experts in the field, covering specific both contexts and applications. Three classes of turbulent flow are addressed, including incompressible, compressible and reactive, with a wide range of the best numerical practices covered. A thorough introduction to the numerical methods is provided for those without a background in turbulence, as is everything needed for a thorough understanding of the fundamental equations. The small scales that must be resolved are generally not localized around some distinct small-scale feature, but instead are distributed throughout a volume. These characteristics put particular strain on the numerical methods used to simulate turbulent flows. - Includes a detailed review of the numerical approximation issues that impact the simulation of turbulence - Provides a range of examples of large eddy simulation techniques - Discusses the challenges posed by boundary conditions in turbulence simulation and provides approaches to addressing them

Book Direct Numerical Simulation of Active Control of Turbulent Channel Flow

Download or read book Direct Numerical Simulation of Active Control of Turbulent Channel Flow written by and published by . This book was released on 2000 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Simulation of Turbulent Flows and Noise Generation

Download or read book Numerical Simulation of Turbulent Flows and Noise Generation written by Christophe Brun and published by Springer. This book was released on 2010-10-22 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.