Download or read book Random Walks and Random Environments Random environments written by Barry D. Hughes and published by Oxford University Press on Demand. This book was released on 1995 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of a two-volume work devoted to probability theory in physical chemistry, and engineering. Rather than dealing explicitly with the idea of an ongoing random walk, with each chaotic step taking place at fixed time intervals, this volume addresses random environments-- models in which the disorder is frozen in space. It begins with an introduction to the geometry of random environments, emphasizing Bernoulli percolation models. The scope of the investigation then widens as we ask how structural disorder affects the transport process. The final chapters confront the interplay of two different forms of randomness; spatial randomness frozen into the environment and temporal randomness associated with the choices for next steps made by a random walker. The book ends with a discussion of "the ant in the labyrinth" problems and an extensive bibliography that, along with the rest of the material, will be of value to researchers in physics, mathematics, and chemical engineering.
Download or read book Random Walks in a Random Environment written by Frederick Charles Solomon and published by . This book was released on 1972 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Random Walk in Random and Non random Environments written by P l Rvsz and published by World Scientific. This book was released on 2005 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results OCo mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. Since the first edition was published in 1990, a number of new results have appeared in the literature. The original edition contained many unsolved problems and conjectures which have since been settled; this second revised and enlarged edition includes those new results. Three new chapters have been added: frequently and rarely visited points, heavy points and long excursions. This new edition presents the most complete study of, and the most elementary way to study, the path properties of the Brownian motion."
Download or read book Random Walk In Random And Non random Environments Third Edition written by Pal Revesz and published by World Scientific. This book was released on 2013-03-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results — mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk.Since the first and second editions were published in 1990 and 2005, a number of new results have appeared in the literature. The first two editions contained many unsolved problems and conjectures which have since been settled; this third, revised and enlarged edition includes those new results. In this edition, a completely new part is included concerning Simple Random Walks on Graphs. Properties of random walks on several concrete graphs have been studied in the last decade. Some of the obtained results are also presented.
Download or read book Particles in the Coastal Ocean written by Daniel R. Lynch and published by Cambridge University Press. This book was released on 2015 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the modeling of the transport, evolution and fate of particles in the coastal ocean for advanced students and researchers.
Download or read book Random Walk in Random Environment written by Maury Bramson and published by . This book was released on 1988 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Non homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
Download or read book Computational Complexity written by Robert A. Meyers and published by Springer. This book was released on 2011-10-19 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The recognition that the collective behavior of the whole system cannot be simply inferred from an understanding of the behavior of the individual components has led to the development of numerous sophisticated new computational and modeling tools with applications to a wide range of scientific, engineering, and societal phenomena. Computational Complexity: Theory, Techniques and Applications presents a detailed and integrated view of the theoretical basis, computational methods, and state-of-the-art approaches to investigating and modeling of inherently difficult problems whose solution requires extensive resources approaching the practical limits of present-day computer systems. This comprehensive and authoritative reference examines key components of computational complexity, including cellular automata, graph theory, data mining, granular computing, soft computing, wavelets, and more.
Download or read book Stochastic Processes Selected Papers On Hiroshi Tanaka written by Makoto Maejima and published by World Scientific. This book was released on 2002-03-28 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hiroshi Tanaka is noted for his discovery of the “Tanaka formula”, which is a generalization of the Itô formula in stochastic analysis. This important book is a selection of his brilliant works on stochastic processes and related topics. It contains Tanaka's papers on (i) Brownian motion and stochastic differential equations (additive functionals of Brownian paths and stochastic differential equations with reflecting boundaries), (ii) the probabilistic treatment of nonlinear equations (Boltzmann equation, propagation of chaos and McKean-Vlasov limit), and (iii) stochastic processes in random environments (especially limit theorems on the stochastic processes in one-dimensional random environments and their refinements). The book also includes essays by Henry McKean, Marc Yor, Shinzo Watanabe and Hiroshi Tanaka on Tanaka's works.
Download or read book A Random Walk in Physics written by Massimo Cencini and published by Springer Nature. This book was released on 2021-06-15 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an informal, easy-to-understand account of topics in modern physics and mathematics. The focus is, in particular, on statistical mechanics, soft matter, probability, chaos, complexity, and models, as well as their interplay. The book features 28 key entries and it is carefully structured so as to allow readers to pursue different paths that reflect their interests and priorities, thereby avoiding an excessively systematic presentation that might stifle interest. While the majority of the entries concern specific topics and arguments, some relate to important protagonists of science, highlighting and explaining their contributions. Advanced mathematics is avoided, and formulas are introduced in only a few cases. The book is a user-friendly tool that nevertheless avoids scientific compromise. It is of interest to all who seek a better grasp of the world that surrounds us and of the ideas that have changed our perceptions.
Download or read book Ten Lectures on Random Media written by Erwin Bolthausen and published by Springer Science & Business Media. This book was released on 2002-03-01 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The following notes grew out oflectures held during the DMV-Seminar on Random Media in November 1999 at the Mathematics Research Institute of Oberwolfach, and in February-March 2000 at the Ecole Normale Superieure in Paris. In both places the atmosphere was very friendly and stimulating. The positive response of the audience was encouragement enough to write up these notes. I hope they will carryover the enjoyment of the live lectures. I whole heartedly wish to thank Profs. Matthias Kreck and Jean-Franc;ois Le Gall who were respon sible for these two very enjoyable visits, Laurent Miclo for his comments on an earlier version of these notes, and last but not least Erwin Bolthausen who was my accomplice during the DMV-Seminar. A Brief Introduction The main theme of this series of lectures are "Random motions in random me dia". The subject gathers a variety of probabilistic models often originated from physical sciences such as solid state physics, physical chemistry, oceanography, biophysics . . . , in which typically some diffusion mechanism takes place in an inho mogeneous medium. Randomness appears at two levels. It comes in the description of the motion of the particle diffusing in the medium, this is a rather traditional point of view for probability theory; but it also comes in the very description of the medium in which the diffusion takes place.
Download or read book Random Walks and Electric Networks written by Peter G. Doyle and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.
Download or read book Lectures on Probability Theory and Statistics written by Simon Tavaré and published by Springer. This book was released on 2004-01-30 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains lectures given at the 31st Probability Summer School in Saint-Flour (July 8-25, 2001). Simon Tavaré’s lectures serve as an introduction to the coalescent, and to inference for ancestral processes in population genetics. The stochastic computation methods described include rejection methods, importance sampling, Markov chain Monte Carlo, and approximate Bayesian methods. Ofer Zeitouni’s course on "Random Walks in Random Environment" presents systematically the tools that have been introduced to study the model. A fairly complete description of available results in dimension 1 is given. For higher dimension, the basic techniques and a discussion of some of the available results are provided. The contribution also includes an updated annotated bibliography and suggestions for further reading. Olivier Catoni's course appears separately.
Download or read book Directed Polymers in Random Environments written by Francis Comets and published by Springer. This book was released on 2017-01-26 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main questionis: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed?This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monograph is aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students.
Download or read book Transformations of Materials written by Dimitri D Vvedensky and published by Morgan & Claypool Publishers. This book was released on 2019-09-30 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase transformations are among the most intriguing and technologically useful phenomena in materials, particularly with regard to controlling microstructure. After a review of thermodynamics, this book has chapters on Brownian motion and the diffusion equation, diffusion in solids based on transition-state theory, spinodal decomposition, nucleation and growth, instabilities in solidification, and diffusionless transformations. Each chapter includes exercises whose solutions are available in a separate manual. This book is based on the notes from a graduate course taught in the Centre for Doctoral Training in the Theory and Simulation of Materials. The course was attended by students with undergraduate degrees in physics, mathematics, chemistry, materials science, and engineering. The notes from this course, and this book, were written to accommodate these diverse backgrounds.
Download or read book Random Walks and Diffusion written by Open University Course Team and published by . This book was released on 2009-10-21 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This block explores the diffusion equation which is most commonly encountered in discussions of the flow of heat and of molecules moving in liquids, but diffusion equations arise from many different areas of applied mathematics. As well as considering the solutions of diffusion equations in detail, we also discuss the microscopic mechanism underlying the diffusion equation, namely that particles of matter or heat move erratically. This involves a discussion of elementary probability and statistics, which are used to develop a description of random walk processes and of the central limit theorem. These concepts are used to show that if particles follow random walk trajectories, their density obeys the diffusion equation.