EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Geometry

Download or read book Differential Geometry written by Tanjiro Okubo and published by . This book was released on 1987 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Geometry

Download or read book Differential Geometry written by Ta-tsien Li and published by World Scientific. This book was released on 2008 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a self-contained and accessible manner. Although the field is often considered a OC classicalOCO one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role.The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and mesh generation in finite element methods.This volume will be very useful to graduate students and researchers in pure and applied mathematics."

Book Differential Geometry and Its Applications

Download or read book Differential Geometry and Its Applications written by John Oprea and published by MAA. This book was released on 2007-09-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Book An Introduction to Differential Geometry with Applications to Elasticity

Download or read book An Introduction to Differential Geometry with Applications to Elasticity written by Philippe G. Ciarlet and published by Springer Science & Business Media. This book was released on 2006-06-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

Book Differential Geometry of Varieties with Degenerate Gauss Maps

Download or read book Differential Geometry of Varieties with Degenerate Gauss Maps written by Maks A. Akivis and published by Springer Science & Business Media. This book was released on 2004 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the differential geometry of varieties with degenerate Gauss maps, using moving frames and exterior differential forms as well as tensor methods. The authors illustrate the structure of varieties with degenerate Gauss maps, determine the singular points and singular varieties, find focal images and construct a classification of the varieties with degenerate Gauss maps.

Book Differential Geometry

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Book

    Book Details:
  • Author : Philippe G. Ciarlet
  • Publisher :
  • Release : 2008
  • ISBN : 9787040222838
  • Pages : 292 pages

Download or read book written by Philippe G. Ciarlet and published by . This book was released on 2008 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: 根据CIP数据著录

Book Discrete Differential Geometry

Download or read book Discrete Differential Geometry written by Alexander I. Bobenko and published by American Mathematical Society. This book was released on 2023-09-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.

Book Modern Differential Geometry in Gauge Theories

Download or read book Modern Differential Geometry in Gauge Theories written by Anastasios Mallios and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

Book Differential Geometry

    Book Details:
  • Author : Erwin Kreyszig
  • Publisher : Courier Corporation
  • Release : 2013-04-26
  • ISBN : 0486318621
  • Pages : 384 pages

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Book An Introduction to Noncommutative Differential Geometry and Its Physical Applications

Download or read book An Introduction to Noncommutative Differential Geometry and Its Physical Applications written by J. Madore and published by Cambridge University Press. This book was released on 1999-06-24 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised introduction to non-commutative geometry.

Book Differential Geometry and Topology

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Book Differential Geometry  Gauge Theories  and Gravity

Download or read book Differential Geometry Gauge Theories and Gravity written by M. Göckeler and published by Cambridge University Press. This book was released on 1989-07-28 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.

Book Applied Differential Geometry

Download or read book Applied Differential Geometry written by William L. Burke and published by Cambridge University Press. This book was released on 1985-05-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.

Book Geometry and Complexity Theory

Download or read book Geometry and Complexity Theory written by J. M. Landsberg and published by Cambridge University Press. This book was released on 2017-09-28 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Book Differential Geometry and Lie Groups

Download or read book Differential Geometry and Lie Groups written by Jean Gallier and published by Springer Nature. This book was released on 2020-08-14 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an introduction to differential geometry designed for readers interested in modern geometry processing. Working from basic undergraduate prerequisites, the authors develop manifold theory and Lie groups from scratch; fundamental topics in Riemannian geometry follow, culminating in the theory that underpins manifold optimization techniques. Students and professionals working in computer vision, robotics, and machine learning will appreciate this pathway into the mathematical concepts behind many modern applications. Starting with the matrix exponential, the text begins with an introduction to Lie groups and group actions. Manifolds, tangent spaces, and cotangent spaces follow; a chapter on the construction of manifolds from gluing data is particularly relevant to the reconstruction of surfaces from 3D meshes. Vector fields and basic point-set topology bridge into the second part of the book, which focuses on Riemannian geometry. Chapters on Riemannian manifolds encompass Riemannian metrics, geodesics, and curvature. Topics that follow include submersions, curvature on Lie groups, and the Log-Euclidean framework. The final chapter highlights naturally reductive homogeneous manifolds and symmetric spaces, revealing the machinery needed to generalize important optimization techniques to Riemannian manifolds. Exercises are included throughout, along with optional sections that delve into more theoretical topics. Differential Geometry and Lie Groups: A Computational Perspective offers a uniquely accessible perspective on differential geometry for those interested in the theory behind modern computing applications. Equally suited to classroom use or independent study, the text will appeal to students and professionals alike; only a background in calculus and linear algebra is assumed. Readers looking to continue on to more advanced topics will appreciate the authors’ companion volume Differential Geometry and Lie Groups: A Second Course.

Book Basic Elements of Differential Geometry and Topology

Download or read book Basic Elements of Differential Geometry and Topology written by S.P. Novikov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series