EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Geometry and Its Applications

Download or read book Differential Geometry and Its Applications written by John Oprea and published by MAA. This book was released on 2007-09-06 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Book Differential Geometry

Download or read book Differential Geometry written by Ta-tsien Li and published by World Scientific. This book was released on 2008 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a self-contained and accessible manner. Although the field is often considered a OC classicalOCO one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role.The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and mesh generation in finite element methods.This volume will be very useful to graduate students and researchers in pure and applied mathematics."

Book An Introduction to Differential Geometry with Applications to Elasticity

Download or read book An Introduction to Differential Geometry with Applications to Elasticity written by Philippe G. Ciarlet and published by Springer Science & Business Media. This book was released on 2006-06-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

Book Geometric Control Theory

Download or read book Geometric Control Theory written by Velimir Jurdjevic and published by Cambridge University Press. This book was released on 1997 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric control theory is concerned with the evolution of systems subject to physical laws but having some degree of freedom through which motion is to be controlled. This book describes the mathematical theory inspired by the irreversible nature of time evolving events. The first part of the book deals with the issue of being able to steer the system from any point of departure to any desired destination. The second part deals with optimal control, the question of finding the best possible course. An overlap with mathematical physics is demonstrated by the Maximum principle, a fundamental principle of optimality arising from geometric control, which is applied to time-evolving systems governed by physics as well as to man-made systems governed by controls. Applications are drawn from geometry, mechanics, and control of dynamical systems. The geometric language in which the results are expressed allows clear visual interpretations and makes the book accessible to physicists and engineers as well as to mathematicians.

Book Differential Geometry

    Book Details:
  • Author : Erwin Kreyszig
  • Publisher : Courier Corporation
  • Release : 2013-04-26
  • ISBN : 0486318621
  • Pages : 384 pages

Download or read book Differential Geometry written by Erwin Kreyszig and published by Courier Corporation. This book was released on 2013-04-26 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Book Modern Differential Geometry in Gauge Theories

Download or read book Modern Differential Geometry in Gauge Theories written by Anastasios Mallios and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

Book Differential Geometry  Calculus of Variations  and Their Applications

Download or read book Differential Geometry Calculus of Variations and Their Applications written by George M. Rassias and published by CRC Press. This book was released on 1985-10-01 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.

Book Differential Geometry  Gauge Theories  and Gravity

Download or read book Differential Geometry Gauge Theories and Gravity written by M. Göckeler and published by Cambridge University Press. This book was released on 1989-07-28 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cambridge University Press is committed to keeping scholarly work in print for as long as possible. A short print-run of this academic paperback has been produced using digital technology. This technology has enabled Cambridge to keep the book in print for specialists and students when traditional methods of reprinting would not have been feasible. While the new digital cover differs from the original, the text content is identical to that of previous printings.

Book Applied Differential Geometry

Download or read book Applied Differential Geometry written by William L. Burke and published by Cambridge University Press. This book was released on 1985-05-31 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.

Book Differential Geometry

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Book Gauge Fields  Knots  and Gravity

    Book Details:
  • Author : Associate Professor Department of Mathematics John C Baez
  • Publisher : World Scientific Publishing Company Incorporated
  • Release : 1994
  • ISBN : 9789810217297
  • Pages : 465 pages

Download or read book Gauge Fields Knots and Gravity written by Associate Professor Department of Mathematics John C Baez and published by World Scientific Publishing Company Incorporated. This book was released on 1994 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. The book begins with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then introduce vector bundles, connections and curvature in order to generalize Maxwell theory to the Yang-Mills equations. The relation of gauge theory to the newly discovered knot invariants such as the Jones polynomial is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity and show how an attempt to quantize gravity leads to interesting applications of knot theory.

Book Differential Geometry and Statistics

Download or read book Differential Geometry and Statistics written by M.K. Murray and published by CRC Press. This book was released on 1993-04-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever since the introduction by Rao in 1945 of the Fisher information metric on a family of probability distributions, there has been interest among statisticians in the application of differential geometry to statistics. This interest has increased rapidly in the last couple of decades with the work of a large number of researchers. Until now an impediment to the spread of these ideas into the wider community of statisticians has been the lack of a suitable text introducing the modern coordinate free approach to differential geometry in a manner accessible to statisticians. Differential Geometry and Statistics aims to fill this gap. The authors bring to this book extensive research experience in differential geometry and its application to statistics. The book commences with the study of the simplest differentiable manifolds - affine spaces and their relevance to exponential families, and goes on to the general theory, the Fisher information metric, the Amari connections and asymptotics. It culminates in the theory of vector bundles, principal bundles and jets and their applications to the theory of strings - a topic presently at the cutting edge of research in statistics and differential geometry.

Book Differential Geometry and Topology

Download or read book Differential Geometry and Topology written by Keith Burns and published by CRC Press. This book was released on 2005-05-27 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Book Differential Geometry

    Book Details:
  • Author : Heinrich W. Guggenheimer
  • Publisher : Courier Corporation
  • Release : 2012-04-27
  • ISBN : 0486157202
  • Pages : 404 pages

Download or read book Differential Geometry written by Heinrich W. Guggenheimer and published by Courier Corporation. This book was released on 2012-04-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.

Book An Introduction to Noncommutative Differential Geometry and Its Physical Applications

Download or read book An Introduction to Noncommutative Differential Geometry and Its Physical Applications written by J. Madore and published by Cambridge University Press. This book was released on 1999-06-24 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thoroughly revised introduction to non-commutative geometry.

Book Introduction to Numerical Linear Algebra and Optimisation

Download or read book Introduction to Numerical Linear Algebra and Optimisation written by Philippe G. Ciarlet and published by Cambridge University Press. This book was released on 1989-08-25 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.

Book Basic Elements of Differential Geometry and Topology

Download or read book Basic Elements of Differential Geometry and Topology written by S.P. Novikov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series