EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Geometry For Physicists And Mathematicians  Moving Frames And Differential Forms  From Euclid Past Riemann

Download or read book Differential Geometry For Physicists And Mathematicians Moving Frames And Differential Forms From Euclid Past Riemann written by Jose G Vargas and published by World Scientific. This book was released on 2014-03-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative — almost like a story being told — that does not impede sophistication and deep results.It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas of mathematics that are of interest to physicists and mathematicians, but are largely overlooked. Among these is Clifford Algebra and its uses in conjunction with differential forms and moving frames. It opens new research vistas that expand the subject matter.In an appendix on the classical theory of curves and surfaces, the author slashes not only the main proofs of the traditional approach, which uses vector calculus, but even existing treatments that also use differential forms for the same purpose.

Book Differential Geometry for Physicists and Mathematicians

Download or read book Differential Geometry for Physicists and Mathematicians written by José G. Vargas and published by World Scientific Publishing Company Incorporated. This book was released on 2014 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: I. Introduction. 1. Orientations -- II. Tools. 2. Differential forms -- 3. Vector spaces and tensor products -- 4. Exterior differentiation -- III. Two Klein geometries. 5. Affine Klein geometry -- 6. Euclidean Klein geometry -- IV. Cartan connections. 7. Generalized geometry made simple -- 8. Affine connections -- 9. Euclidean connections -- 10. Riemannian spaces and pseudo-spaces -- V. The future? 11. Extensions of Cartan -- 12. Understand the past to imagine the future -- 13. A book of farewells

Book Differential Forms for Cartan Klein Geometry

Download or read book Differential Forms for Cartan Klein Geometry written by Jose G. Vargas and published by Abramis. This book was released on 2012-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book lets readers understand differential geometry with differential forms. It is unique in providing detailed treatments of topics not normally found elsewhere, like the programs of B. Riemann and F. Klein in the second half of the 19th century, and their being superseded by E. Cartan in the twentieth. Several conservation laws are presented in a unified way. The Einstein 3-form rather than the Einstein tensor is emphasized; their relationship is shown. Examples are chosen for their pedagogic value. Numerous advanced comments are sprinkled throughout the text. The equations of structure are addressed in different ways. First, in affine and Euclidean spaces, where torsion and curvature simply happen to be zero. In a second approach, the 2-torus and the punctured plane and 2-sphere are endowed with the "Columbus connection," torsion becoming a concept which could have been understood even by sailors of the 15th century. Those equations are then presented as the breaking of integrability conditions for connection equations. Finally, a topological definition brings together the concepts of connection and equations of structure. These options should meet the needs and learning objectives of readers with very different backgrounds. Dr Howard E Brandt

Book Cartan for Beginners

    Book Details:
  • Author : Thomas Andrew Ivey
  • Publisher : American Mathematical Soc.
  • Release : 2003
  • ISBN : 0821833758
  • Pages : 394 pages

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Book Visual Differential Geometry and Forms

Download or read book Visual Differential Geometry and Forms written by Tristan Needham and published by Princeton University Press. This book was released on 2021-07-13 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Book Galileo Unbound

    Book Details:
  • Author : David D. Nolte
  • Publisher : Oxford University Press
  • Release : 2018-07-12
  • ISBN : 0192528505
  • Pages : 384 pages

Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Book Differential Geometry in Physics

Download or read book Differential Geometry in Physics written by Gabriel Lugo and published by . This book was released on 2021-10-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.

Book Introduction to Differential Geometry

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Book Modern Differential Geometry for Physicists

Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Geometry

Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.

Book Remarkable Mathematicians

    Book Details:
  • Author : Ioan James
  • Publisher : Mathematical Association of America
  • Release : 2003-02-06
  • ISBN : 9780521817776
  • Pages : 286 pages

Download or read book Remarkable Mathematicians written by Ioan James and published by Mathematical Association of America. This book was released on 2003-02-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ioan James introduces and profiles sixty mathematicians from the era when mathematics was freed from its classical origins to develop into its modern form. The subjects, all born between 1700 and 1910, come from a wide range of countries, and all made important contributions to mathematics, through their ideas, their teaching, and their influence. James emphasizes their varied life stories, not the details of their mathematical achievements. The book is organized chronologically into ten chapters, each of which contains biographical sketches of six mathematicians. The men and women James has chosen to portray are representative of the history of mathematics, such that their stories, when read in sequence, convey in human terms something of the way in which mathematics developed. Ioan James is a professor at the Mathematical Institute, University of Oxford. He is the author of Topological Topics (Cambridge, 1983), Fibrewise Topology (Cambridge, 1989), Introduction to Uniform Spaces (Cambridge, 1990), Topological and Uniform Spaces (Springer-Verlag New York, 1999), and co-author with Michael C. Crabb of Fibrewise Homotopy Theory (Springer-Verlag New York, 1998). James is the former editor of the London Mathematical Society Lecture Note Series and volume editor of numerous books. He is the organizer of the Oxford Series of Topology symposia and other conferences, and co-chairman of the Task Force for Mathematical Sciences of Campaign for Oxford.

Book Lectures on the Geometry of Manifolds

Download or read book Lectures on the Geometry of Manifolds written by Liviu I. Nicolaescu and published by World Scientific. This book was released on 2007 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar‚ duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H”lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

Book Exploring the Riemann Zeta Function

Download or read book Exploring the Riemann Zeta Function written by Hugh Montgomery and published by Springer. This book was released on 2017-09-11 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.

Book Differential Geometry and Lie Groups for Physicists

Download or read book Differential Geometry and Lie Groups for Physicists written by Marián Fecko and published by Cambridge University Press. This book was released on 2006-10-12 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.

Book Exotic Smoothness And Physics  Differential Topology And Spacetime Models

Download or read book Exotic Smoothness And Physics Differential Topology And Spacetime Models written by Torsten Asselmeyer-maluga and published by World Scientific. This book was released on 2007-01-23 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent revolution in differential topology related to the discovery of non-standard (”exotic”) smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit — but now shown to be incorrect — assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further applications to spacetime models.

Book Analysis III

    Book Details:
  • Author : Roger Godement
  • Publisher : Springer
  • Release : 2015-04-04
  • ISBN : 3319160532
  • Pages : 325 pages

Download or read book Analysis III written by Roger Godement and published by Springer. This book was released on 2015-04-04 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).

Book Covariant Physics

    Book Details:
  • Author : Moataz Emam
  • Publisher : Oxford University Press, USA
  • Release : 2021-02-21
  • ISBN : 0198864892
  • Pages : 403 pages

Download or read book Covariant Physics written by Moataz Emam and published by Oxford University Press, USA. This book was released on 2021-02-21 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for 2nd and 3rd year undergraduate students using the fundamental principle of covariance as a basis for studying classical mechanics, electrodynamics, the special theory of relativity, and the general theory of relativity, before moving on to more advanced topics of field theory, differential forms, and modified theories of gravity.