Download or read book Differential Evolution From Theory to Practice written by B. Vinoth Kumar and published by Springer Nature. This book was released on 2022-01-25 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses and disseminates state-of-the-art research and development of differential evolution (DE) and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques. Differential evolution is a population-based meta-heuristic technique for global optimization capable of handling non-differentiable, non-linear and multi-modal objective functions. Many advances have been made recently in differential evolution, from theory to applications. This book comprises contributions which include theoretical developments in DE, performance comparisons of DE, hybrid DE approaches, parallel and distributed DE for multi-objective optimization, software implementations, and real-world applications. The book is useful for researchers, practitioners, and students in disciplines such as optimization, heuristics, operations research and natural computing.
Download or read book Differential Evolution written by Kenneth Price and published by Springer Science & Business Media. This book was released on 2006-03-04 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems demanding globally optimal solutions are ubiquitous, yet many are intractable when they involve constrained functions having many local optima and interacting, mixed-type variables. The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast. Packed with illustrations, computer code, new insights, and practical advice, this volume explores DE in both principle and practice. It is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.
Download or read book Differential Evolution written by Vitaliy Feoktistov and published by Springer Science & Business Media. This book was released on 2007-02-15 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Individuals and enterprises are looking for optimal solutions for the problems they face. Most problems can be expressed in mathematical terms, and so the methods of optimization render a significant aid. This book details the latest achievements in optimization. It offers comprehensive coverage on Differential Evolution, presenting revolutionary ideas in population-based optimization and shows the best known metaheuristics through the prism of Differential Evolution.
Download or read book Differential Evolution in Electromagnetics written by Anyong Qing and published by Springer Science & Business Media. This book was released on 2010-05-28 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential evolution has proven itself a very simple while very powerful stochastic global optimizer. It has been applied to solve problems in many scientific and engineering fields. This book focuses on applications of differential evolution in electromagnetics to showcase its achievement and capability in solving synthesis and design problems in electromagnetics.Topics covered in this book include:• A comprehensive up-to-date literature survey on differential evolution• A systematic description of differential evolution• A topical review on applications of differential evolution in electromagnetics• Five new application examplesThis book is ideal for electromagnetic researchers and people in differential evolution community. It is also a valuable reference book for researchers and students in the optimization or electrical and electronic engineering field. In addition, managers and engineers in relevant fields will find it a helpful introductory guide.
Download or read book Advances in Differential Evolution written by Uday K. Chakraborty and published by Springer Science & Business Media. This book was released on 2008-07-23 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential evolution is arguably one of the hottest topics in today's computational intelligence research. This book seeks to present a comprehensive study of the state of the art in this technology and also directions for future research. The fourteen chapters of this book have been written by leading experts in the area. The first seven chapters focus on algorithm design, while the last seven describe real-world applications. Chapter 1 introduces the basic differential evolution (DE) algorithm and presents a broad overview of the field. Chapter 2 presents a new, rotationally invariant DE algorithm. The role of self-adaptive control parameters in DE is investigated in Chapter 3. Chapters 4 and 5 address constrained optimization; the former develops suitable stopping conditions for the DE run, and the latter presents an improved DE algorithm for problems with very small feasible regions. A novel DE algorithm, based on the concept of "opposite" points, is the topic of Chapter 6. Chapter 7 provides a survey of multi-objective differential evolution algorithms. A review of the major application areas of differential evolution is presented in Chapter 8. Chapter 9 discusses the application of differential evolution in two important areas of applied electromagnetics. Chapters 10 and 11 focus on applications of hybrid DE algorithms to problems in power system optimization. Chapter 12 applies the DE algorithm to computer chess. The use of DE to solve a problem in bioprocess engineering is discussed in Chapter 13. Chapter 14 describes the application of hybrid differential evolution to a problem in control engineering.
Download or read book Multi Objective Optimization in Computational Intelligence Theory and Practice written by Thu Bui, Lam and published by IGI Global. This book was released on 2008-05-31 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-objective optimization (MO) is a fast-developing field in computational intelligence research. Giving decision makers more options to choose from using some post-analysis preference information, there are a number of competitive MO techniques with an increasingly large number of MO real-world applications. Multi-Objective Optimization in Computational Intelligence: Theory and Practice explores the theoretical, as well as empirical, performance of MOs on a wide range of optimization issues including combinatorial, real-valued, dynamic, and noisy problems. This book provides scholars, academics, and practitioners with a fundamental, comprehensive collection of research on multi-objective optimization techniques, applications, and practices.
Download or read book Introduction to Evolutionary Computing written by A.E. Eiben and published by Springer Science & Business Media. This book was released on 2007-08-06 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Download or read book Dual Phase Evolution written by David G. Green and published by Springer Science & Business Media. This book was released on 2013-11-12 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the book is to lay out the foundations and provide a detailed treatment of the subject. It will focus on two main elements in dual phase evolution: the relationship between dual phase evolution and other phase transition phenomena and the advantages of dual phase evolution in evolutionary computation and complex adaptive systems. The book will provide a coherent picture of dual phase evolution that encompasses these two elements and frameworks, methods and techniques to use this concept for problem solving.
Download or read book Trends in Theory and Practice of Nonlinear Differential Equations written by V. Lakshmikantham and published by CRC Press. This book was released on 2020-12-18 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on an International Conference on Trends in Theory and Practice of Nonlinear Differential Equations held at The University of Texas at Arlington. It aims to feature recent trends in theory and practice of nonlinear differential equations.
Download or read book Computational Intelligence in Optimization written by Yoel Tenne and published by Springer Science & Business Media. This book was released on 2010-06-30 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.
Download or read book Adaptive Differential Evolution written by Jingqiao Zhang and published by Springer Science & Business Media. This book was released on 2009-07-09 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental theme of this book is theoretical study of differential evolution and algorithmic analysis of parameter adaptive schemes. The book offers real-world insights into a variety of large-scale complex industrial applications.
Download or read book Derivative Free and Blackbox Optimization written by Charles Audet and published by Springer. This book was released on 2017-12-02 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.
Download or read book Advances in Data Driven Computing and Intelligent Systems written by Swagatam Das and published by Springer Nature. This book was released on with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Download or read book Differential Dynamical Systems Revised Edition written by James D. Meiss and published by SIAM. This book was released on 2017-01-24 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Download or read book Contemporary Evolution Strategies written by Thomas Bäck and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys key algorithm developments between 1990 and 2012, with brief descriptions, a unified pseudocode for each algorithm and downloadable program code. Provides a taxonomy to clarify similarities and differences as well as historical relationships.
Download or read book Evolutionary Computation and Optimization Algorithms in Software Engineering Applications and Techniques written by Chis, Monica and published by IGI Global. This book was released on 2010-06-30 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary Computation and Optimization Algorithms in Software Engineering: Applications and Techniques lays the foundation for the successful integration of evolutionary computation into software engineering. It surveys techniques ranging from genetic algorithms, to swarm optimization theory, to ant colony optimization, demonstrating their uses and capabilities. These techniques are applied to aspects of software engineering such as software testing, quality assessment, reliability assessment, and fault prediction models, among others, to providing researchers, scholars and students with the knowledge needed to expand this burgeoning application.