EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Differential Equations and Mathematical Biology

Download or read book Differential Equations and Mathematical Biology written by D.S. Jones and published by CRC Press. This book was released on 2009-11-09 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deepen students' understanding of biological phenomenaSuitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeli

Book Mathematical Biology II

    Book Details:
  • Author : James D. Murray
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-15
  • ISBN : 0387952284
  • Pages : 834 pages

Download or read book Mathematical Biology II written by James D. Murray and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Book A Course in Mathematical Biology

Download or read book A Course in Mathematical Biology written by Gerda de Vries and published by SIAM. This book was released on 2006-07-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.

Book Modeling Differential Equations in Biology

Download or read book Modeling Differential Equations in Biology written by Clifford Henry Taubes and published by Cambridge University Press. This book was released on 2008-01-17 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a very successful one-semester course taught at Harvard, this text teaches students in the life sciences how to use differential equations to help their research. It needs only a semester's background in calculus. Ideas from linear algebra and partial differential equations that are most useful to the life sciences are introduced as needed, and in the context of life science applications, are drawn from real, published papers. It also teaches students how to recognize when differential equations can help focus research. A course taught with this book can replace the standard course in multivariable calculus that is more usually suited to engineers and physicists.

Book Introduction to Mathematical Biology

Download or read book Introduction to Mathematical Biology written by Ching Shan Chou and published by Springer. This book was released on 2016-04-27 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.

Book Differential Equations with Applications to Biology

Download or read book Differential Equations with Applications to Biology written by Shigui Ruan and published by American Mathematical Soc.. This book was released on 1999 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings from the International Conference held in Halifax, NS in July 1997. Funded by The Fields Institute and Le Centre de Recherches Mathématiques, the conference was held in honor of the retirement of Professors Lynn Erbe and Herb I. Freedman (University of Alberta). Featured topics include ordinary, partial, functional, and stochastic differential equations and their applications to biology, epidemiology, neurobiology, physiology and other related areas. The 41 papers included in this volume represent the recent work of leading researchers over a wide range of subjects, including bifurcation theory, chaos, stability theory, boundary value problems, persistence theory, neural networks, disease transmission, population dynamics, pattern formation and more. The text would be suitable for a graduate or advanced undergraduate course study in mathematical biology. Features: An overview of current developments in differential equations and mathematical biology. Authoritative contributions from over 60 leading worldwide researchers. Original, refereed contributions.

Book Differential Equations and Applications in Ecology  Epidemics  and Population Problems

Download or read book Differential Equations and Applications in Ecology Epidemics and Population Problems written by Stavros Busenberg and published by Elsevier. This book was released on 2012-12-02 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential Equations and Applications in Ecology, Epidemics, and Population Problems is composed of papers and abstracts presented at the 1981 research conference on Differential Equations and Applications to Ecology, Epidemics, and Population Problems held at Harvey Mudd College. The reported researches consist of mathematics that is either a direct outgrowth from questions in population biology and biomathematics, or applicable to such questions. The content of this volume are collected in four groups. The first group addresses aspects of population dynamics that involve the interaction between spatial and temporal effects. The second group covers other questions in population dynamics and some other areas of biomathematics. The third group deals with topics in differential and functional differential equations that are continuing to find important applications in mathematical biology. The last group comprises of work on various aspects of differential equations and dynamical systems, not essentially motivated by biological applications. This book is valuable to students and researchers in theoretical biology and biomathematics, as well as to those interested in modern applications of differential equations.

Book Mathematical Biology

    Book Details:
  • Author : James D. Murray
  • Publisher : Springer Science & Business Media
  • Release : 2007-06-12
  • ISBN : 0387224378
  • Pages : 551 pages

Download or read book Mathematical Biology written by James D. Murray and published by Springer Science & Business Media. This book was released on 2007-06-12 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Biology is a richly illustrated textbook in an exciting and fast growing field. Providing an in-depth look at the practical use of math modeling, it features exercises throughout that are drawn from a variety of bioscientific disciplines - population biology, developmental biology, physiology, epidemiology, and evolution, among others. It maintains a consistent level throughout so that graduate students can use it to gain a foothold into this dynamic research area.

Book Biology in Time and Space

Download or read book Biology in Time and Space written by James P. Keener and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parabolic Equations in Biology

Download or read book Parabolic Equations in Biology written by Benoît Perthame and published by Springer. This book was released on 2015-09-09 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

Book Essential Mathematical Biology

Download or read book Essential Mathematical Biology written by Nicholas F. Britton and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

Book Differential Equations and Mathematical Biology

Download or read book Differential Equations and Mathematical Biology written by D. S. Jones and published by Springer. This book was released on 2014-01-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, mathematics has made a considerable impact as a tool with which to model and understand biological phenomena. In return, biology has confronted the mathematician with a variety of challenging problems which have stimulated developments in the theory of nonlinear differential equations. This book is the outcome of the need to introduce undergraduates of mathematics, the physical and biological sciences to some of those developments. It is primarily directed towards students with a mathematical background up to and including that normally taught in a first-year physical science degree of a British university (sophomore year in a North American university) who are interested in the application of mathematics to biological and physical situations. Chapter 1 is introductory, showing how the study of first-order ordinary differential equations may be used to model the growth of a population, monitoring the administration of drugs and the mechanism by which living cells divide. In Chapter 2, a fairly comprehensive account of linear ordinary differential equations with constant coefficients is given. Such equations arise frequently in the discussion of the biological models encountered throughout the text. Chapter 3 is devoted to modelling biological pheno mena and in particular includes (i) physiology of the heart beat cycle, (ii) blood flow, (iii) the transmission of electrochemical pulses in the nerve, (iv) the Belousov-Zhabotinskii chemical reaction and (v) predator-prey models.

Book Delay Differential Equations and Applications to Biology

Download or read book Delay Differential Equations and Applications to Biology written by Fathalla A. Rihan and published by Springer Nature. This book was released on 2021-08-19 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.

Book Mathematical Models in Biology

Download or read book Mathematical Models in Biology written by Leah Edelstein-Keshet and published by SIAM. This book was released on 1988-01-01 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.

Book Differential Equations and Mathematical Biology

Download or read book Differential Equations and Mathematical Biology written by D. S. Jones and published by Springer. This book was released on 2012-01-24 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, mathematics has made a considerable impact as a tool with which to model and understand biological phenomena. In return, biology has confronted the mathematician with a variety of challenging problems which have stimulated developments in the theory of nonlinear differential equations. This book is the outcome of the need to introduce undergraduates of mathematics, the physical and biological sciences to some of those developments. It is primarily directed towards students with a mathematical background up to and including that normally taught in a first-year physical science degree of a British university (sophomore year in a North American university) who are interested in the application of mathematics to biological and physical situations. Chapter 1 is introductory, showing how the study of first-order ordinary differential equations may be used to model the growth of a population, monitoring the administration of drugs and the mechanism by which living cells divide. In Chapter 2, a fairly comprehensive account of linear ordinary differential equations with constant coefficients is given. Such equations arise frequently in the discussion of the biological models encountered throughout the text. Chapter 3 is devoted to modelling biological pheno mena and in particular includes (i) physiology of the heart beat cycle, (ii) blood flow, (iii) the transmission of electrochemical pulses in the nerve, (iv) the Belousov-Zhabotinskii chemical reaction and (v) predator-prey models.

Book Nonlinear PDEs

    Book Details:
  • Author : Marius Ghergu
  • Publisher : Springer Science & Business Media
  • Release : 2011-10-21
  • ISBN : 3642226647
  • Pages : 402 pages

Download or read book Nonlinear PDEs written by Marius Ghergu and published by Springer Science & Business Media. This book was released on 2011-10-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.​

Book Modeling and Differential Equations in Biology

Download or read book Modeling and Differential Equations in Biology written by T. A. Burton and published by Routledge. This book was released on 2017-10-05 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: First published in 1980. CRC Press is an imprint of Taylor & Francis.