EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Dualities and Representations of Lie Superalgebras

Download or read book Dualities and Representations of Lie Superalgebras written by Shun-Jen Cheng and published by American Mathematical Soc.. This book was released on 2012 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic account of the structure and representation theory of finite-dimensional complex Lie superalgebras of classical type and serves as a good introduction to representation theory of Lie superalgebras. Several folklore results are rigorously proved (and occasionally corrected in detail), sometimes with new proofs. Three important dualities are presented in the book, with the unifying theme of determining irreducible characters of Lie superalgebras. In order of increasing sophistication, they are Schur duality, Howe duality, and super duality. The combinatorics of symmetric functions is developed as needed in connections to Harish-Chandra homomorphism as well as irreducible characters for Lie superalgebras. Schur-Sergeev duality for the queer Lie superalgebra is presented from scratch with complete detail. Howe duality for Lie superalgebras is presented in book form for the first time. Super duality is a new approach developed in the past few years toward understanding the Bernstein-Gelfand-Gelfand category of modules for classical Lie superalgebras. Super duality relates the representation theory of classical Lie superalgebras directly to the representation theory of classical Lie algebras and thus gives a solution to the irreducible character problem of Lie superalgebras via the Kazhdan-Lusztig polynomials of classical Lie algebras.

Book Lie Superalgebras and Enveloping Algebras

Download or read book Lie Superalgebras and Enveloping Algebras written by Ian Malcolm Musson and published by American Mathematical Soc.. This book was released on 2012-04-04 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.

Book Dictionary on Lie Algebras and Superalgebras

Download or read book Dictionary on Lie Algebras and Superalgebras written by Luc Frappat and published by . This book was released on 2000 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a detailed reference on Lie algebras and Lie superalgebras presented in the form of a dictionary. It is intended to be useful to mathematical and theoretical physicists, from the level of the graduate student upwards. The Dictionary will serve as the reference of choice for practitioners and students alike. Key Features: * Compiles and presents material currently scattered throughout numerous textbooks and specialist journal articles * Dictionary format provides an easy to use reference on the essential topics concerning Lie algebras and Lie superalgebras * Covers the structure of Lie algebras and Lie superalgebras and their finite dimensional representation theory * Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras

Book Representations of Lie Algebras  Quantum Groups and Related Topics

Download or read book Representations of Lie Algebras Quantum Groups and Related Topics written by Naihuan Jing and published by American Mathematical Soc.. This book was released on 2018-08-21 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Representations of Lie Algebras, Quantum Groups and Related Topics, held from November 12–13, 2016, at North Carolina State University, Raleigh, North Carolina. The articles cover various aspects of representations of Kac–Moody Lie algebras and their applications, structure of Leibniz algebras and Krichever–Novikov algebras, representations of quantum groups, and related topics.

Book Operads And Universal Algebra   Proceedings Of The International Conference

Download or read book Operads And Universal Algebra Proceedings Of The International Conference written by Chengming Bai and published by World Scientific. This book was released on 2012-02-23 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book aims to exemplify the recent developments in operad theory, in universal algebra and related topics in algebraic topology and theoretical physics. The conference has established a better connection between mathematicians working on operads (mainly the French team) and mathematicians working in universal algebra (primarily the Chinese team), and to exchange problems, methods and techniques from these two subject areas.

Book Non Associative Algebras and Related Topics

Download or read book Non Associative Algebras and Related Topics written by Helena Albuquerque and published by Springer Nature. This book was released on 2023-07-28 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18–22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory. One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.

Book Symmetries And Groups In Contemporary Physics   Proceedings Of The Xxix International Colloquium On Group theoretical Methods In Physics

Download or read book Symmetries And Groups In Contemporary Physics Proceedings Of The Xxix International Colloquium On Group theoretical Methods In Physics written by Chengming Bai and published by World Scientific. This book was released on 2013-07-26 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on developments in the field of group theory in its broadest sense and is of interest to theoretical and experimental physicists, mathematicians, and scientists in related disciplines who are interested in the latest methods and applications. In an increasingly ultra-specialized world, this volume will demonstrate the interchange of ideas and methods in theoretical and mathematical physics.

Book Supersymmetry in Mathematics and Physics

Download or read book Supersymmetry in Mathematics and Physics written by Sergio Ferrara and published by Springer. This book was released on 2011-08-27 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised.

Book Hopf Algebras  Quantum Groups and Yang Baxter Equations

Download or read book Hopf Algebras Quantum Groups and Yang Baxter Equations written by Florin Felix Nichita and published by MDPI. This book was released on 2019-01-31 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Hopf Algebras, Quantum Groups and Yang-Baxter Equations" that was published in Axioms

Book The Schr  dinger Virasoro Algebra

Download or read book The Schr dinger Virasoro Algebra written by Jérémie Unterberger and published by Springer Science & Business Media. This book was released on 2011-10-25 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure—the Schrödinger-Virasoro algebra. Just as Poincaré invariance or conformal (Virasoro) invariance play a key rôle in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrödinger operators.

Book Chevalley Supergroups

    Book Details:
  • Author : Rita Fioresi
  • Publisher : American Mathematical Soc.
  • Release : 2012
  • ISBN : 0821853007
  • Pages : 77 pages

Download or read book Chevalley Supergroups written by Rita Fioresi and published by American Mathematical Soc.. This book was released on 2012 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones. The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.

Book Lie Theory and Its Applications in Physics

Download or read book Lie Theory and Its Applications in Physics written by Vladimir Dobrev and published by Springer. This book was released on 2016-12-10 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems.Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.“div>This is a large interdisciplinary and interrelated field, and the present volume is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.

Book Group Theory

    Book Details:
  • Author : Predrag Cvitanović
  • Publisher : Princeton University Press
  • Release : 2020-05-26
  • ISBN : 0691202982
  • Pages : 278 pages

Download or read book Group Theory written by Predrag Cvitanović and published by Princeton University Press. This book was released on 2020-05-26 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.

Book Non Associative Algebra and Its Applications

Download or read book Non Associative Algebra and Its Applications written by Lev Sabinin and published by CRC Press. This book was released on 2006-01-13 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences. This book covers material such as Jordan superalgebras, nonassociative deformations, nonassociative generalization of Hopf algebras, the structure of free algebras, derivations of Lie algebras, and the identities of Albert algebra. It also includes applications of smooth quasigroups and loops to differential geometry and relativity.

Book Mathematical Foundations of Supersymmetry

Download or read book Mathematical Foundations of Supersymmetry written by Claudio Carmeli and published by European Mathematical Society. This book was released on 2011 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supersymmetry is a highly active area of considerable interest among physicists and mathematicians. It is not only fascinating in its own right, but there is also indication that it plays a fundamental role in the physics of elementary particles and gravitation. The purpose of the book is to lay down the foundations of the subject, providing the reader with a comprehensive introduction to the language and techniques, as well as detailed proofs and many clarifying examples. This book is aimed ideally at second-year graduate students. After the first three introductory chapters, the text is divided into two parts: the theory of smooth supermanifolds and Lie supergroups, including the Frobenius theorem, and the theory of algebraic superschemes and supergroups. There are three appendices. The first introduces Lie superalgebras and representations of classical Lie superalgebras, the second collects some relevant facts on categories, sheafification of functors and commutative algebra, and the third explains the notion of Frechet space in the super context.

Book Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1

Download or read book Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 written by Vladimir Dobrev and published by Springer. This book was released on 2018-11-28 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first volume of proceedings from the joint conference X International Symposium “Quantum Theory and Symmetries” (QTS-X) and XII International Workshop “Lie Theory and Its Applications in Physics” (LT-XII), held on 19–25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.

Book Minkowski And Conformal Superspaces  The  The Classical And Quantum Descriptions

Download or read book Minkowski And Conformal Superspaces The The Classical And Quantum Descriptions written by Rita Fioresi and published by World Scientific. This book was released on 2015-03-09 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed at graduate students and researchers in physics and mathematics who seek to understand the basics of supersymmetry from a mathematical point of view. It provides a bridge between the physical and mathematical approaches to the superworld. The physicist who is devoted to learning the basics of supergeometry can find a friendly approach here, since only the concepts that are strictly necessary are introduced. On the other hand, the mathematician who wants to learn from physics will find that all the mathematical assumptions are firmly rooted in physical concepts. This may open up a channel of communication between the two communities working on different aspects of supersymmetry.Starting from special relativity and Minkowski space, the idea of conformal space and superspace is built step by step in a mathematically rigorous way, and always connecting with the ideas and notation used in physics. While the book is mainly devoted to these important physical examples of superspaces, it can also be used as an introduction to the field of supergeometry, where a reader can ease into the subject without being overwhelmed with the technical difficulties.