EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Semiconductor Physics and Devices

Download or read book Semiconductor Physics and Devices written by Donald A. Neamen and published by . This book was released on 2003 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text aims to provide the fundamentals necessary to understand semiconductor device characteristics, operations and limitations. Quantum mechanics and quantum theory are explored, and this background helps give students a deeper understanding of the essentials of physics and semiconductors.

Book Semiconductor Device Physics and Design

Download or read book Semiconductor Device Physics and Design written by Umesh Mishra and published by Springer Science & Business Media. This book was released on 2007-11-28 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.

Book Modern Semiconductor Device Physics

Download or read book Modern Semiconductor Device Physics written by S. M. Sze and published by Wiley-Interscience. This book was released on 1998 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: An in-depth, up-to-date presentation of the physics and operational principles of all modern semiconductor devices The companion volume to Dr. Sze's classic Physics of Semiconductor Devices, Modern Semiconductor Device Physics covers all the significant advances in the field over the past decade. To provide the most authoritative, state-of-the-art information on this rapidly developing technology, Dr. Sze has gathered the contributions of world-renowned experts in each area. Principal topics include bipolar transistors, compound-semiconductor field-effect-transistors, MOSFET and related devices, power devices, quantum-effect and hot-electron devices, active microwave diodes, high-speed photonic devices, and solar cells. Supported by hundreds of illustrations and references and a problem set at the end of each chapter, Modern Semiconductor Device Physics is the essential text/reference for electrical engineers, physicists, material scientists, and graduate students actively working in microelectronics and related fields.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by Simon M. Sze and published by John Wiley & Sons. This book was released on 2006-12-13 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

Book Semiconductor Device Physics and Simulation

Download or read book Semiconductor Device Physics and Simulation written by J.S. Yuan and published by Springer Science & Business Media. This book was released on 1998-05-31 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Book Modern Semiconductor Physics and Device Applications

Download or read book Modern Semiconductor Physics and Device Applications written by Vitalii K Dugaev and published by CRC Press. This book was released on 2021-11-15 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a theoretical background for contemporary trends in solid-state theory and semiconductor device physics. It discusses advanced methods of quantum mechanics and field theory and is therefore primarily intended for graduate students in theoretical and experimental physics who have already studied electrodynamics, statistical physics, and quantum mechanics. It also relates solid-state physics fundamentals to semiconductor device applications and includes auxiliary results from mathematics and quantum mechanics, making the book useful also for graduate students in electrical engineering and material science. Key Features: Explores concepts common in textbooks on semiconductors, in addition to topics not included in similar books currently available on the market, such as the topology of Hilbert space in crystals Contains the latest research and developments in the field Written in an accessible yet rigorous manner

Book Physics and Properties of Narrow Gap Semiconductors

Download or read book Physics and Properties of Narrow Gap Semiconductors written by Junhao Chu and published by Springer Science & Business Media. This book was released on 2007-11-21 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.

Book Carbon Nanotube and Graphene Device Physics

Download or read book Carbon Nanotube and Graphene Device Physics written by H.-S. Philip Wong and published by Cambridge University Press. This book was released on 2011 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first introductory textbook to explain the properties and performance of practical nanotube devices and related applications.

Book Solar Cell Device Physics

Download or read book Solar Cell Device Physics written by Stephen J. Fonash and published by Elsevier. This book was released on 2012-12-02 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.

Book Semiconductor Radiation Detectors

Download or read book Semiconductor Radiation Detectors written by Gerhard Lutz and published by Springer. This book was released on 2007-06-15 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by Simon M. Sze and published by John Wiley & Sons. This book was released on 2021-03-03 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

Book Introductory Semiconductor Device Physics

Download or read book Introductory Semiconductor Device Physics written by Greg Parker and published by CRC Press. This book was released on 2004-09-30 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentr

Book Essential Classical Mechanics for Device Physics

Download or read book Essential Classical Mechanics for Device Physics written by A F J Levi and published by Morgan & Claypool Publishers. This book was released on 2016-09-15 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continued advances in the precision manufacturing of new structures at the nanometer scale have provided unique opportunities for device physics. This book sets out to summarize those elements of classical mechanics most applicable for scientists and engineers studying device physics. Supplementary MATLAB® materials are available for all figures generated numerically.

Book Physics of Quantum Electron Devices

Download or read book Physics of Quantum Electron Devices written by Federico Capasso and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to engineer the bandstructure and the wavefunction over length scales previously inaccessible to technology using artificially structured materials and nanolithography has led to a new class of electron semiconductor devices whose operation is controlled by quantum effects. These structures not only represent exciting tools for investigating new quantum phenomena in semiconductors, but also offer exciting opportunities for applications. This book gives the first comprehensive treatment of the physics of quantum electron devices. This interdisciplinary field, at the junction between material science, physics and technology, has witnessed an explosive growth in recent years. This volume presents a detailed coverage of the physics of the underlying phenomena, and their device and circuit applications, together with fabrication and growth technology.

Book The Physics of Semiconductors

Download or read book The Physics of Semiconductors written by Marius Grundmann and published by Springer Nature. This book was released on 2021-03-06 with total page 905 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.

Book Physics of Semiconductor Devices

Download or read book Physics of Semiconductor Devices written by Michael Shur and published by Pearson. This book was released on 1990 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manual contains the PLOTF software, user's guide and program description to accompany Michael Shur's 'Physics of semiconductor devices' - rear cover.

Book ESD

    ESD

    Book Details:
  • Author : Steven H. Voldman
  • Publisher : John Wiley & Sons
  • Release : 2005-12-13
  • ISBN : 0470012900
  • Pages : 420 pages

Download or read book ESD written by Steven H. Voldman and published by John Wiley & Sons. This book was released on 2005-12-13 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first in a series of three books addressing Electrostatic Discharge (ESD) physics, devices, circuits and design across the full range of integrated circuit technologies. ESD Physics and Devices provides a concise treatment of the ESD phenomenon and the physics of devices operating under ESD conditions. Voldman presents an accessible introduction to the field for engineers and researchers requiring a solid grounding in this important area. The book contains advanced CMOS, Silicon On Insulator, Silicon Germanium, and Silicon Germanium Carbon. In addition it also addresses ESD in advanced CMOS with discussions on shallow trench isolation (STI), Copper and Low K materials. Provides a clear understanding of ESD device physics and the fundamentals of ESD phenomena. Analyses the behaviour of semiconductor devices under ESD conditions. Addresses the growing awareness of the problems resulting from ESD phenomena in advanced integrated circuits. Covers ESD testing, failure criteria and scaling theory for CMOS, SOI (silicon on insulator), BiCMOS and BiCMOS SiGe (Silicon Germanium) technologies for the first time. Discusses the design and development implications of ESD in semiconductor technologies. An invaluable reference for EMC non-specialist engineers and researchers working in the fields of IC and transistor design. Also, suitable for researchers and advanced students in the fields of device/circuit modelling and semiconductor reliability.