EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of Wide Bandgap Solid state Neutron Detectors

Download or read book Development of Wide Bandgap Solid state Neutron Detectors written by Andrew Geier Melton and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work novel solid-state neutron detectors based on Gallium Nitride (GaN) have been produced and characterized. GaN is a radiation hard semiconductor which is commonly used in commercial optoelectronic devices. The important design consideration for producing GaN-based neutron detectors have been examined, and device simulations performed. Scintillators and p-i-n diode-type neutron detectors have been grown by metalorganic chemical vapor deposition (MOCVD) and characterized. GaN was found to be intrinsically neutron sensitive through the Nitrogen-14 (n, p) reaction. Neutron conversion layers which produce secondary ionizing radiation were also produced and evaluated. GaN scintillator response was found to scale highly linearly with nuclear reactor power, indicating that GaN-based detectors are suitable for use in the nuclear power industry. This work is the first demonstration of using GaN for neutron detection. This is a novel application for a mature semiconductor material. The results presented here provide a proof-of-concept for solid-state GaN-based neutron detectors which offer many potential advantages over the current state-of-the-art, including lower cost, lower power operation, and mechanical robustness. At present Helium-3 proportional counters are the preferred technology for neutron detection, however this isotope is extremely rare, and there is a global shortage. Meanwhile demand for neutron detectors from the nuclear power, particle physics, and homeland security sectors requires development of novel neutron detectors which are which are functional, cost-effective, and deployable.

Book Development of a Solid State Neutron Detector for SNAP 10A

Download or read book Development of a Solid State Neutron Detector for SNAP 10A written by A. Chesavage and published by . This book was released on 1966 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of A Self Biased High Efficiency Solid State Neutron Detector for MPACT Applications

Download or read book Development of A Self Biased High Efficiency Solid State Neutron Detector for MPACT Applications written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Neutron detection is an important aspect of materials protection, accounting, and control for transmutation (MPACT). Currently He-3 filled thermal neutron detectors are utilized in many applications; these detectors require high-voltage bias for operation, which complicates the system when multiple detectors are used. In addition, due to recent increase in homeland security activity and the nuclear renaissance, there is a shortage of He-3, and these detectors become more expensive. Instead, cheap solid-state detectors that can be mass produced like any other computer chips will be developed. The new detector does not require a bias for operation, has low gamma sensitivity, and a fast response. The detection system is based on a honeycomb-like silicon device, which is filled with B-10 as the neutron converter; while a silicon p-n diode (i.e., solar cell type device) formed on the thin silicon wall of the honeycomb structure detects the energetic charged particles emitted from the B-10 conversion layer. Such a detector has ~40% calculated thermal neutron detection efficiency with an overall detector thickness of about 200?m. Stacking of these devices allows over 90% thermal neutron detection efficiency. The goal of the proposed research is to develop a high-efficiency, low-noise, self-powered solid-state neutron detector system based on the promising results of the existing research program. A prototype of this solid-state neutron detector system with sufficient detector size (up to 8-inch diam., but still portable and inexpensive) and integrated with interface electronics (e.g., preamplifier) will be designed, fabricated, and tested as a coincidence counter for MPACT applications. All fabrications proposed are based on silicon-compatible processing; thus, an extremely cheap detector system could be massively produced like any other silicon chips. Such detectors will revolutionize current neutron detection systems by providing a solid-state alternative to traditional gas-based neutron detectors.

Book Development of Front end Electronics for Large Area Solid state Neutron Detector Arrays

Download or read book Development of Front end Electronics for Large Area Solid state Neutron Detector Arrays written by Erik English and published by . This book was released on 2015 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Sensing

Download or read book Radiation Sensing written by Kelum A. A. Gamage and published by MDPI. This book was released on 2021-09-06 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiation detection is important in many fields, and it poses significant challenges for instrument designers. Radiation detection instruments, particularly for nuclear decommissioning and security applications, are required to operate in unknown environments and should detect and characterise radiation fields in real time. This book covers both theory and practice, and it solicits recent advances in radiation detection, with a particular focus on radiation detection instrument design, real-time data processing, radiation simulation and experimental work, robot design, control systems, task planning and radiation shielding.

Book Application and Development of Microstructured Solid state Neutron Detectors

Download or read book Application and Development of Microstructured Solid state Neutron Detectors written by Adam D. Weltz and published by . This book was released on 2017 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Caught by Surprise

    Book Details:
  • Author : United States. Congress. House. Committee on Science and Technology (2007). Subcommittee on Investigations and Oversight
  • Publisher :
  • Release : 2010
  • ISBN :
  • Pages : 516 pages

Download or read book Caught by Surprise written by United States. Congress. House. Committee on Science and Technology (2007). Subcommittee on Investigations and Oversight and published by . This book was released on 2010 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Developments in Solid State Detectors for Personnel Neutron Dosimetry

Download or read book Developments in Solid State Detectors for Personnel Neutron Dosimetry written by and published by . This book was released on 1981 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The personnel neutron exposure potential at the Lawrence Livermore National Laboratory is more diverse than at many other facilities, due to the wide range of neutron producing activities. Albedo energy response problems in the face of the diversity of sources, and a concern about possible photon interferences with the neutron albedo response, have prompted development of some additional dosimetry techniques to augment the personnel monitoring program. This work now consists of two programs - the dosimeter/spectrometer (DOSPEC) in which track etch detectors are added to the albedo badge to provide some energy evaluation and gamma insensitivity, and development of solid state thin film MOS detectors to provide a real time, gamma insensitive dosimeter.

Book Solid State Neutron Detectors

Download or read book Solid State Neutron Detectors written by James F. Murphy and published by . This book was released on 1961 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Microstructured Semiconductor Neutron Detectors

Download or read book Advanced Microstructured Semiconductor Neutron Detectors written by Steven Lawrence Bellinger and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/[gamma]) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array on a single silicon chip. Individual elements of the array were tested for thermal-neutron detection efficiency and for the n/[gamma] reject ratio. Overall, because of the inadequacies and costs of other neutron detection systems, the MSND is the premier technology for many neutron detection applications.

Book Particle Physics Reference Library

Download or read book Particle Physics Reference Library written by Christian W. Fabjan and published by Springer Nature. This book was released on 2020 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

Book Roadmap for High Efficiency Solid State Neutron Detectors

Download or read book Roadmap for High Efficiency Solid State Neutron Detectors written by T. Wang and published by . This book was released on 2005 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-alpha converter material onto a semiconductor. The as-created alpha particles in the material are expected to impinge the semiconductor and create electron-hole pairs which provide the electrical signal. These devices are limited in efficiency to a range near (2-5%)/cm{sup 2} due to the conflicting thickness requirements of the converter layer. In this case, the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to allow the alpha particles to reach the semiconductor. A three dimensional matrix structure has great potential to satisfy these two requirements in one device. Such structures can be realized by using PIN diode pillar elements to extend in the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is based on both ''top-down'' and ''bottom-up'' approaches. The ''top down'' approach employs high-density plasma etching techniques, while the ''bottom up'' approach draws on the growth of nanowires by chemical vapor deposition. From our simulations for structures with pillar diameters from 2 {micro}m down to 100 nm, the detector efficiency is expected to increase with a decrease in pillar size. Moreover, in the optimized configuration, the detector efficiency could be higher than 75%/cm{sup 2}. Finally, the road map for the relationship between detector diameter and efficiency will be outlined.

Book Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization

Download or read book Development of a Neutron Diffraction System and Neutron Imaging System for Beamport Characterization written by Troy Casey Unruh and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor neutron detector design, fabrication and testing are all performed at Kansas State University (KSU). The most prevalent neutron detectors built by the KSU Semiconductor Materials And Radiological Technologies Laboratory (SMART Lab) are comprised of silicon diodes with [superscript]6LiF as a neutron converter material. Neutron response testing and calibration of the detectors is performed in a neutron detector test facility. The facility utilizes diffraction with a pyrolytic graphite (PG) monochromator to produce a diffracted neutron beam at the northwest beamport of the KSU Training Research Isotope production General Atomics (TRIGA) Mark-II nuclear reactor. A 2-D neutron beam monitor can also be used in conjunction with the test facility for active calibrations. Described in the following work are the design, construction and operation of a neutron detector test facility and a 2-D neutron detection array. The diffracted neutron beam at the detector test facility has been characterized to yield a neutron beam with an average Gaussian energy of 0.0253 eV. The diffracted beam yields a flux of 1.2x10[superscript]4 neutrons/cm[superscript]2/s at 100 kW of reactor power. The PG monochromator is diffracting on the (002) plane that has been positioned at a Bragg angle of 15.5 degrees. The 2-D neutron detection array has been characterized for uniform pixel response and uniform neutron detection efficiency. The 2-D 5x5 array of neutron detectors with a neutron detection efficiency of approximately 0.5 percent has been used as a beam monitor when performing detector testing. The amplifier circuits for the 5x5 array were designed at the KSU Electronics Design Lab (EDL) and were coupled to a LabVIEW field-programmable gate array that is read out by a custom LabVIEW virtual instrument. The virtual instrument has been calibrated to produce a pixel response that varies by less than two percent from pixel to pixel. The array has been used for imaging and active monitoring of the diffracted neutron beam at the detector test facility. The following work is part of on-going research to develop various types of solid state semiconductor neutron detectors.

Book Dual side Etched Microstructured Semiconductor Neutron Detectors

Download or read book Dual side Etched Microstructured Semiconductor Neutron Detectors written by Ryan G. Fronk and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in high-efficiency replacements for thin-film-coated thermal neutron detectors led to the development of single-sided microstructured semiconductor neutron detectors (MSNDs). MSNDs are designed with micro-sized trench structures that are etched into a vertically-oriented pvn-junction diode, and backfilled with a neutron converting material, such as 6LiF. Neutrons absorbed by the converting material produce a pair of charged-particle reaction products that can be measured by the diode substrate. MSNDs have higher neutron-absorption and reaction-product counting efficiencies than their thin-film-coated counterparts, resulting in up to a 10x increase in intrinsic thermal neutron detection efficiency. The detection efficiency for a single-sided MSND is reduced by neutron streaming paths between the conversion-material filled regions that consequently allow neutrons to pass undetected through the detector. Previously, the highest reported intrinsic thermal neutron detection efficiency for a single MSND was approximately 30%. Methods for double-stacking and aligning MSNDs to reduce neutron streaming produced devices with an intrinsic thermal neutron detection efficiency of 42%. Presented here is a new type of MSND that features a complementary second set of trenches that are etched into the back-side of the detector substrate. These dual-sided microstructured semiconductor neutron detectors (DS-MSNDs) have the ability to absorb and detect neutrons that stream through the front-side, effectively doubling the detection efficiency of a single-sided device. DS-MSND sensors are theoretically capable of achieving greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. Prototype DS-MSNDs with diffused pvp-junction operated at 0-V applied bias have achieved 53.54±0.61%, exceeding that of the single-sided MSNDs and double-stacked MSNDs to represent a new record for detection efficiency for such solid-state devices.

Book Advanced Materials for Radiation Detection

Download or read book Advanced Materials for Radiation Detection written by Krzysztof (Kris) Iniewski and published by Springer Nature. This book was released on 2021-08-05 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.