EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

Download or read book Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors written by and published by . This book was released on 2011 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

Book A Search for Low mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon mediated Particle Detectors

Download or read book A Search for Low mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon mediated Particle Detectors written by David Craig Moore and published by . This book was released on 2012 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Cryogenic Dark Matter Search

Download or read book The Cryogenic Dark Matter Search written by and published by . This book was released on 2010 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Book The Cryogenic Dark Matter Search  First 5 Tower Data and Improved Understanding of Ionization Collection

Download or read book The Cryogenic Dark Matter Search First 5 Tower Data and Improved Understanding of Ionization Collection written by Catherine N. Bailey and published by . This book was released on 2010 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the Ơ̐1rst data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c^2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modiƠ̐1cation of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis eƠ̐0ort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

Book A Search for Low mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon mediated Particle Detectors

Download or read book A Search for Low mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon mediated Particle Detectors written by and published by . This book was released on 2012 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of BetaContamination

Download or read book Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of BetaContamination written by Donald D. Driscoll and published by . This book was released on 2004 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the first use of a beta-eliminating cut based on a maximum-likelihood characterization described above.

Book Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

Download or read book Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment written by Kevin Ahmad McCarthy and published by . This book was released on 2013 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that ~85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented. 140.23 kg-days of WIMP search data from the silicon detectors in the CDMSII experiment is also analyzed. The resulting upper limits on the WIMP-nucleon crosssection are higher than those published by other experiments at all WIMP masses, and the lowest limit on the WIMP-nucleon cross-section is 1.07*10-42 cm2 at a mass of 60 GeV/c2. These results do provide new and interesting constraints at WIMP masses

Book Cryogenic Particle Detection

    Book Details:
  • Author : Hans-Christian Stahl
  • Publisher : Springer Science & Business Media
  • Release : 2005-06-22
  • ISBN : 9783540201137
  • Pages : 538 pages

Download or read book Cryogenic Particle Detection written by Hans-Christian Stahl and published by Springer Science & Business Media. This book was released on 2005-06-22 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of cryogenic devices for particle detection has reached a stage at which many interesting applications are conceivable and already have been demonstrated. The book provides a comprehensive review of the field of cryogenic particle detection. It introduces the different detection techniques and gives an overview of the important areas in which these detectors are successfully applied.

Book First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site

Download or read book First Results from the Cryogenic Dark Matter Search Experiment at the Deep Site written by and published by . This book was released on 2004 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of the Weakly Interacting Massive Particles (WIMPs). For this purpose, CDMS uses detectors based on crystals of Ge and Si, operated at the temperature of 20 mK, and providing a two-fold signature of an interaction: the ionization and the athermal phonon signals. The two signals, along with the passive and active shielding of the experimental setup, and with the underground experimental sites, allow very effective suppression and rejection of different types of backgrounds. This dissertation presents the commissioning and the results of the first WIMP-search run performed by the CDMS collaboration at the deep underground site at the Soudan mine in Minnesota. We develop different methods of suppressing the dominant background due to the electron-recoil events taking place at the detector surface and we apply these algorithms to the data set. These results place the world's most sensitive limits on the WIMP-nucleon spin-independent elastic-scattering cross-section. Finally, they examine the compatibility of the supersymmetric WIMP-models with the direct-detection experiments (such as CDMS) and discuss the implications of the new CDMS result on these models.

Book Ionization Collection in Detectors of the Cryogenic Dark Matter Search

Download or read book Ionization Collection in Detectors of the Cryogenic Dark Matter Search written by Arran Thomas James Phipps and published by . This book was released on 2016 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of ``overcharged'' $D^-$ donor and $A^+$ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.

Book Ionization Collection in Detectors of the Cryogenic Dark Matter Search

Download or read book Ionization Collection in Detectors of the Cryogenic Dark Matter Search written by and published by . This book was released on 2016 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of "overcharged" D- donor and A+ acceptor impurity states. The thermal stability of these states is exclusive to sub-Kelvin operation, explaining why ionization collection in CDMS detectors differs from similar semiconductor detectors operating at higher temperature. This work represents a solid foundation for the understanding ionization collection in CDMS detectors.

Book Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

Download or read book Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment written by and published by . This book was released on 2013 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

Book Low Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

Download or read book Low Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search written by and published by . This book was released on 2016 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, "dark matter". Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003-2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity to low-mass WIMPs. This is the CDMS low ionization threshold experiment (CDMSlite), which has pushed the frontier at lower WIMP masses. This dissertation describes the second run of CDMSlite at Soudan: its hardware, operations, analysis, and results. The results include new WIMP mass-cross section upper limits on the spin-independent and spin-dependent WIMP-nucleon interactions. Thanks to the lower background and threshold in this run compared to the first CDMSlite run, these limits are the most sensitive in the world below WIMP masses of ~4 GeV/c2. This demonstrates also the great promise and utility of the high-voltage operating mode in the SuperCDMS SNOLAB experiment.

Book A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One  and Two  Tower Runs of CDMS II at Soudan

Download or read book A Search for Particle Dark Matter Using Cryogenic Germanium and Silicon Detectors in the One and Two Tower Runs of CDMS II at Soudan written by and published by . This book was released on 2008 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector, s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single, combined analysis, with sensitivity to lower-energy interactions, careful control of data quality and stability, and further development of techniques for reconstructing event location and rejecting near-surface interactions from beta decays. They also present a revision to the previously published Run 119 analysis, a demonstration of the feasibility of a low-threshold (1 or 2 keV) analysis of Soudan data, and a review of the literature on charge generation and quenching relevant to the ionization signal.

Book Advanced Analysis and Background Techniques for the Cryogenic Dark Matter Search

Download or read book Advanced Analysis and Background Techniques for the Cryogenic Dark Matter Search written by Xinjie Qiu and published by . This book was released on 2010 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC

Download or read book Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC written by Jelena Aleksić and published by Springer. This book was released on 2015-11-06 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.

Book Task I

    Book Details:
  • Author :
  • Publisher :
  • Release : 2013
  • ISBN :
  • Pages : pages

Download or read book Task I written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performance period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R & D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics - In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The "first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on th ...