EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Microfluidics for Single Cell Analysis

Download or read book Microfluidics for Single Cell Analysis written by Jin-Ming Lin and published by Springer Nature. This book was released on 2019-08-28 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.

Book Microfluidics Based Microsystems

Download or read book Microfluidics Based Microsystems written by S. Kakaç and published by Springer Science & Business Media. This book was released on 2010-09-10 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.

Book Microfluidic Cell Culture Systems

Download or read book Microfluidic Cell Culture Systems written by Jeffrey T Borenstein and published by Elsevier. This book was released on 2018-09-12 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances. - Provides design and operation methodology for microfluidic and microfabricated materials and devices for organ-on-chip disease and safety models. This is a rapidly expanding field that will continue to grow along with advances in cell biology and microfluidics technologies. - Comprehensively covers strategies and techniques ranging from academic first principles to industrial scale-up approaches. Readers will gain insight into cell-material interactions, microfluidic flow, and design principles. - Offers three fundamental types of information: 1) design principles, 2) operation techniques, and 3) background information/perspectives. The book is carefully designed to strike a balance between these three areas, so it will be of use to a broad range of readers with different technical interests and educational levels.

Book Cell Analysis on Microfluidics

Download or read book Cell Analysis on Microfluidics written by Jin-Ming Lin and published by Springer. This book was released on 2017-10-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Book New Microfluidic Platforms for Cell Studies

Download or read book New Microfluidic Platforms for Cell Studies written by Irena Barbulovic-Nad and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidics for Biological Applications

Download or read book Microfluidics for Biological Applications written by Wei-Cheng Tian and published by Springer Science & Business Media. This book was released on 2009-03-02 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics for Biological Applications provides researchers and scientists in the biotechnology, pharmaceutical, and life science industries with an introduction to the basics of microfluidics and also discusses how to link these technologies to various biological applications at the industrial and academic level. Readers will gain insight into a wide variety of biological applications for microfluidics. The material presented here is divided into four parts, Part I gives perspective on the history and development of microfluidic technologies, Part II presents overviews on how microfluidic systems have been used to study and manipulate specific classes of components, Part III focuses on specific biological applications of microfluidics: biodefense, diagnostics, high throughput screening, and tissue engineering and finally Part IV concludes with a discussion of emerging trends in the microfluidics field and the current challenges to the growth and continuing success of the field.

Book Microfluidic Methods for Molecular Biology

Download or read book Microfluidic Methods for Molecular Biology written by Chang Lu and published by Springer. This book was released on 2016-05-14 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the state-of-the-art research on molecular biology assays and molecular techniques enabled or enhanced by microfluidic platforms. Topics covered include microfluidic methods for cellular separations and single cell studies, droplet-based approaches to study protein expression and forensics, and microfluidic in situ hybridization for RNA analysis. Key molecular biology studies using model organisms are reviewed in detail. This is an ideal book for students and researchers in the microfluidics and molecular biology fields as well as engineers working in the biotechnology industry. This book also: Reviews exhaustively the latest techniques for single-cell genetic, epigenetic, metabolomic, and proteomic analysis Illustrates microfluidic approaches for inverse metabolic engineering, as well as analysis of circulating exosomes Broadens readers’ understanding of microfluidics convection-based PCR technology, microfluidic RNA-seq, and microfluidics for robust mobile diagnostics

Book Development of a Microfluidic Platform for Multicellular Tumour Spheroid Assays

Download or read book Development of a Microfluidic Platform for Multicellular Tumour Spheroid Assays written by Kay Seonaid McMillan and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics is a valuable technology for a variety of different biomedical applications. In particular, within cancer research, it can be used to improve upon currently used in vitro screening assays by facilitating the use of 3D cell culture models. One of these models is the multicellular tumour spheroid (MCTS), which provides a more accurate reflection of the tumour microenvironment in vivo by reproducing the cell to cell contact, the development of a nutritional gradient and the formation of a heterogeneous population of cells. Therefore, the MCTS provides a more physiologically relevant in vitro model for testing the efficacy of treatments at the preclinical level. Currently, methods for the formation and culture of spheroids have several limitations, including being labour intensive, being low throughput, producing shear stress towards cells and the hanging drop system being unstable to physical shocks. Recently, microfluidics (especially droplet microfluidics) has been employed for the culture and screening of spheroids, providing a high-throughput methodology which only requires small volumes of fluids and small numbers of cells. However, current issues with droplet microfluidics include complicated droplet gelation procedures and short cell culture times.In this thesis, the use of microfluidic technologies as an approach for spheroid formation and culture are investigated with the aim to create a platform for radiotherapeutic and chemotherapeutic treatment of spheroids using cell lines. Initially, the use of emulsion technology at the macro scale was evaluated to determine the best conditions for spheroid culture. Once this was achieved the spheroids were compared to spheroids using a traditional method and radiotherapeutic treatment was conducted. Subsequently, avenues for miniaturising the developed emulsion-based methods were studied to provide a microfluidic technology. Finally, along with identifying the optimal culture conditions using hydrogels, a microfluidic system that integrated both droplet and single phase microfluidics features was developed for the formation and culture of spheroids. Using the latter, proof of principle experiments were conducted to demonstrate the suitability of the platform for both chemotherapeutic and radiotherapeutic assays within the same device.

Book Applications of Microfluidic Systems in Biology and Medicine

Download or read book Applications of Microfluidic Systems in Biology and Medicine written by Manabu Tokeshi and published by Springer Nature. This book was released on with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microfluidics for Pharmaceutical Applications

Download or read book Microfluidics for Pharmaceutical Applications written by Hélder A. Santos and published by William Andrew. This book was released on 2018-10-12 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery is a concept-orientated reference that features case studies on utilizing microfluidics for drug delivery applications. It is a valuable learning reference on microfluidics for drug delivery applications and assists practitioners developing novel drug delivery platforms using microfluidics. It explores advances in microfluidics for drug delivery applications from different perspectives, covering device fabrication, fluid dynamics, cutting-edge microfluidic technology in the global drug delivery industry, lab-on-chip nano/micro fabrication and drug encapsulation, cell encapsulation and delivery, and cell- drug interaction screening. These microfluidic platforms have revolutionized the drug delivery field, but also show great potential for industrial applications. - Presents detailed coverage on the fabrication of novel drug delivery systems with desired characteristics, such as uniform size, Janus particles, and particular or combined responsiveness - Includes a variety of case studies that explain principles - Focuses on commercialization, cost, safety, society and educational issues of microfluidic applications, showing how microfluidics is used in the real world

Book Toward Accessible Microfluidics

Download or read book Toward Accessible Microfluidics written by Vinay Vishwas Abhyankar and published by . This book was released on 2008 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of Non adherent Single Cell Culturing and Analysis Techniques on Microfluidic Devices

Download or read book Development of Non adherent Single Cell Culturing and Analysis Techniques on Microfluidic Devices written by Pernilla Viberg and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic devices have a wide variety of biological applications. My Ph. D. dissertation focuses on three major projects. A) culturing a non-adherent immortal cell line within a microfluidic device under static and dynamic media flow conditions; B) designing and fabricating novel microfluidic devices for electrokinetic injecting analytes from a hydrodynamic fluid; and C) using this novel injection method to lyse single non-adherent cells by applying a high electric field across the cell at a microfluidic channel intersection. There are several potential advantages to the use of microfluidic devices for the analysis of single cells: First, cells can be handled with care and precision while being transported in the microfluidic channels. Second, cell culturing, handling, and analysis can be integrated together in a single, compact microfluidic device. Third, cell culturing and analysis in microfluidic devices uses only extremely small volumes of culturing media and analysis buffer. In this dissertation a non-adherent immortal cell line was studied under static media flow conditions inside a CO[subscript]2 incubator and under dynamic media flow conditions in a novel portable cell culture chamber. To culture cells they must first be trapped on a microfluidic device. To attempt to successfully trap cells, three different types of cellular traps were designed, fabricated and tested in polydimethylsiloxane (PDMS)-based microfluidic devices. In the first generation device, cubic-shaped traps were used. After 48 h of culturing in these devices the cell viability of 79 " 6 % (n = 3). In the second generation device, circular wells with narrow connecting channels were employed. However, after 12 h of culturing, no viable cells were found. While the second generation device was not capable of successfully culturing cells, it did demonstrate the importance of culturing under dynamic conditions which lead to next design. The third generation microfluidic device consisted of hydrodynamic shaped traps that were used to culture the cells in a less confined environment. The cell viability after 12 h in this design was 29 " 41% (n = 3). In addition to cell trapping, a novel electrokinetic injection method was developed for injecting analytes from a hydrodynamic flow into a separation channel that was followed by an electrokinetic separation. As the hydrodynamic flow could introduce some excess band broadening in the separation, the actual band broadening of an analyte was measured for different channel depths and hydrodynamic fluid flow rates. The results consistently showed that the separations performed on these devices were diffusion limited. Finally, using this novel injection method, single cell lysis was performed by applying a high voltage at the microfluidic channel intersection. The results of these studies may eventually be applied to help answer some fundamental questions in the areas of biochemistry and pharmaceutical science.

Book Self Learning Microfluidic Platform for Single Cell Imaging and Classification in Flow

Download or read book Self Learning Microfluidic Platform for Single Cell Imaging and Classification in Flow written by Iordania Constantinou and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Single-cell analysis commonly requires the confinement of cell suspensions in an analysis chamber or the precise positioning of single cells in small channels. Hydrodynamic flow focusing has been broadly utilized to achieve stream confinement in microchannels for such applications. As imaging flow cytometry gains popularity, the need for imaging-compatible microfluidic devices that allow for precise confinement of single cells in small volumes becomes increasingly important. At the same time, high-throughput single-cell imaging of cell populations produces vast amounts of complex data, which gives rise to the need for versatile algorithms for image analysis. In this work, we present a microfluidics-based platform for single-cell imaging in-flow and subsequent image analysis using variational autoencoders for unsupervised characterization of cellular mixtures. We use simple and robust Y-shaped microfluidic devices and demonstrate precise 3D particle confinement towards the microscope slide for high-resolution imaging. To demonstrate applicability, we use these devices to confine heterogeneous mixtures of yeast species, brightfield-image them in-flow and demonstrate fully unsupervised, as well as few-shot classification of single-cell images with 88% accuracy.

Book High Throughput Microfluidic Technologies for Cell Separation and Single cell Analysis

Download or read book High Throughput Microfluidic Technologies for Cell Separation and Single cell Analysis written by Lidan Wu (Ph. D.) and published by . This book was released on 2016 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The heterogeneity of individual cellular behavior in response to physical and chemical stimuli has raised increasing attention in many biological processes. There is great incentive in developing techniques for high throughput single-cell measurements and manipulations. Particularly, cell size has been recognized as an important parameter in single cell study and pericellular protease activity plays a key role in regulating the microenvironment of individual cells. Therefore, this thesis focuses on establishing new methods to address the issues of cell size and single cell protease measurement. We first develop a size-based cell separation technique using Dean-coupled inertial microfluidic sorter. Separation of cells by size before downstream assays might be beneficial in simplifying the system and facilitating the discovery of rare subpopulations through enrichment of cells with certain size range or cell cycle phase. By investigating the particle focusing and separation mechanisms in curved microfluidic channel, we develop a novel design of inertial microfluidic sorter with higher separation resolution and then demonstrate its capacity in leukocyte isolation from blood. This novel cell sorter would be a promising alternative to many other cell separation problems. We then establish a microfluidic platform for functional measurement of single cell pericellular proteases, including both those secreted and expressed on cell surface. We apply the platform to studying the PMA-mediated protease response of HepG2 cells at single-cell level and reveal the diversity in the dynamic patterns of single-cell protease activity profile upon drug stimulation. We also present the preliminary exploration of single-cell protease activity behavior in anticancer drug resistance development. Lastly, we explore the applicability of our platform for single-cell shedding measurement. Protease-mediated molecular shedding is one of the key mechanisms through which individual cells actively regulate their own microenvironment. However, the amount of molecules being shed for individual cells is extremely low, posing significant challenges in detecting shedding quantitatively. By means of analytical analysis and numerical simulations, we investigate the intrinsic noise of low-abundance molecule detection. Experimental characterizations have also been performed to evaluate the impact of practical factors on actual readout variation.