EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design of Millimeter Wave High Efficiency Oscillator and High Gain Amplifier

Download or read book Design of Millimeter Wave High Efficiency Oscillator and High Gain Amplifier written by Hao Wang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of dissertation is to explore feasibility of designing millimeter-wave (mmWave) circuits in CMOS technology, especially when frequency is close to the maximum oscillation frequency f[subscript max] of the active device. In this dissertation, an embedding network method is proposed to design high efficiency fundamental oscillators and high gain amplifier. First, it reports an approach to designing compact high efficiency mmWave fundamental oscillators operating above the f[subscript max]/2 of the active device. The approach takes full consideration of the nonlinearity of the active device and the finite quality factor of the passive devices to provide an accurate and optimal oscillator design in terms of the output power and efficiency. 213-GHz single-ended and differential fundamental oscillators in 65-nm CMOS technology are presented to demonstrate the effectiveness of the proposed method. Using a compact capacitive transformer design, the single-ended oscillator achieves 0.79-mW output power per transistor (16 [mu]m) at 1.0-V supply and a peak dc-to-RF efficiency of 8.02% (V[subscript DD]=0.80 V) within a core area of 0.0101 mm2, and the measured phase noise is −93.4 dBc/Hz at 1-MHz offset. The differential oscillator exhibits approximately the same performance. A 213-GHz fundamental voltage-controlled oscillator (VCO) with bulk tuning method is also developed in this work. The measured peak efficiency of the VCO is 6.02% with a tuning rang of 2.3% at 0.6-V supply.In order to further improve dc-to-RF efficiency, an optimization-based design methodology is then proposed for high-power and high-efficiency mmWave fundamental oscillators in CMOS technology. The optimization is formulated to take into account the loss of the passive components to result in an optimal circuit design. The proposed approach can produce the final design in a single pass of optimization with a fast and robust convergence profile. A comparative study between the T - and the [pi]-embedding networks is presented. It shows that T -embedding is superior to [pi]-embedding in terms of flexibility in biasing and sensitivity to component Q. A design example of a 215-GHz fundamental oscillator in a 65-nm CMOS technology is presented to demonstrate the effectiveness of the proposed design approach. The oscillator achieves 5.17-dBm peak output power at 1.2-V supply with a corresponding dc-to-RF efficiency 12.3% and a peak efficiency of 13.7%. The measured phase noise is −90.0 dBc/Hz and −116.2 dBc/Hz at 1 MHz and 10 MHz offset, respectively. Lastly, embedding network theory is presented to design high gain amplifier in this dissertation. Two embedding theories, constant GC/U and G[subscript max]/GC, are proposed. A 210-GHz high gain amplifier example is designed. Two 16 [mu]m NMOS transistors consist of a differential circuit with V[subscript DD] = 1.2 V and VG = 0.45 V. The total dc power of the designed 210-GHz amplifier is 12.8 mW. The simulated Gain S21 is 16.66 dB. NF is 7.38 dB. Stability factor k is 3.82 at 210 GHz. The simulated 1dB compression point P1dB, input referred third-order intercept point, IIP3 is -22.33 dB, and -12.97 dB, respectively. These simulated results demonstrate the effectiveness of the proposed design theory.

Book Millimeter Wave Integrated Circuits

Download or read book Millimeter Wave Integrated Circuits written by Eoin Carey and published by Springer Science & Business Media. This book was released on 2004-11-12 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Millimeter-Wave Integrated Circuits delivers a detailed overview of MMIC design, specifically focusing on designs for the millimeter-wave (mm-wave) frequency range. The scope of the book is broad, spanning detailed discussions of high-frequency materials and technologies, high-frequency devices, and the design of high-frequency circuits. The design material is supplemented as appropriate by theoretical analyses. The broad scope of the book gives the reader a good theoretical and practical understanding of mm-wave circuit design. It is best-suited for both undergraduate students who are reading or studying high frequency circuit design and postgraduate students who are specializing in the mm-wave field.

Book Millimeter Wave Power Amplifiers

Download or read book Millimeter Wave Power Amplifiers written by Jaco du Preez and published by Springer. This book was released on 2017-10-05 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

Book RF and mm Wave Power Generation in Silicon

Download or read book RF and mm Wave Power Generation in Silicon written by Hua Wang and published by Academic Press. This book was released on 2015-12-10 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: Power amplifier design fundamentals and methodologies Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy Contributions from the world-class experts from both academia and industry

Book Infrared and Millimeter Waves

Download or read book Infrared and Millimeter Waves written by Kenneth Button and published by Elsevier. This book was released on 2012-12-02 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infrared and Millimeter Waves, Volume 1: Sources of Radiation explores modern sources of radiation available for use in the far-infrared and near-millimeter wavelength range of the spectrum. This book describes the operating principles and comparative performances of all three types of device: electron tubes, solid state devices, and optically pumped lasers. This volume is comprised of seven chapters; the first of which reviews the developments in the design and construction of high-power, high-efficiency millimeter sources and in the nonlinear theory for cyclotron masers. The second chapter deals with IMPATT devices for millimeter-wave power generation, with emphasis on device physics design considerations as well as cw and pulsed operations of IMPATT oscillators and amplifiers at millimeter frequencies. The chapters that follow focus on optically pumped lasers, backward wave oscillators, the Ledatron, and infrared and submillimeter-wave waveguides. This book concludes with a discussion on free electron lasers based on stimulated scattering from relativistic electron beams. An original reformulation of stimulated scattering theory that attempts to encompass all previous treatments is described and compared with available experimental data. This text also presents a semi-qualitative analysis of nonlinear saturation. This book will appeal to scientists and professional engineers.

Book High Efficiency Power Amplifier Design for 28 GHz 5G Transmitters

Download or read book High Efficiency Power Amplifier Design for 28 GHz 5G Transmitters written by Nourhan Elsayed and published by Springer Nature. This book was released on 2022-02-02 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces power amplifier design in 22nm FDSOI CMOS dedicated towards 5G applications at 28 GHz and presents 4 state-of-the-art power amplifier designs. The authors discuss power amplifier performance metrics, design trade-offs, and presents different power amplifier classes utilizing efficiency enhancement techniques at 28 GHz. The book presents the design process from theory, simulation, layout, and finally measurement results.

Book RF and Microwave Power Amplifier Design

Download or read book RF and Microwave Power Amplifier Design written by Andrei Grebennikov and published by McGraw Hill Professional. This book was released on 2004-09-15 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a rigorous tutorial on radio frequency and microwave power amplifier design, teaching the circuit design techniques that form the microelectronic backbones of modern wireless communications systems. Suitable for self-study, corporate training, or Senior/Graduate classroom use, the book combines analytical calculations and computer-aided design techniques to arm electronic engineers with every possible method to improve their designs and shorten their design time cycles.

Book mm Wave Silicon Power Amplifiers and Transmitters

Download or read book mm Wave Silicon Power Amplifiers and Transmitters written by Hossein Hashemi and published by Cambridge University Press. This book was released on 2016-04-04 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build high-performance, spectrally clean, energy-efficient mm-wave power amplifiers and transmitters with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems. Suitable for students, researchers and practicing engineers, this self-contained guide provides in-depth coverage of state-of-the-art semiconductor devices and technologies, linear and nonlinear power amplifier technologies, efficient power combining systems, circuit concepts, system architectures and system-on-a-chip realizations. The world's foremost experts from industry and academia cover all aspects of the design process, from device technologies to system architectures. Accompanied by numerous case studies highlighting practical design techniques, tradeoffs and pitfalls, this is a superb resource for those working with high-frequency systems.

Book Modern Microwave and Millimeter Wave Power Electronics

Download or read book Modern Microwave and Millimeter Wave Power Electronics written by Gregory S. Nusinovich and published by John Wiley & Sons. This book was released on 2005-04-19 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems Microfabricated MVEDs and advanced electron beam sources Klystrons, gyro-amplifiers, and crossed-field devices "Virtual prototyping" of MVEDs via advanced 3-D computational models High-Power Microwave (HPM) sources Next-generation microwave structures and circuits How to achieve linear amplification Advanced materials technologies for MVEDs A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

Book Design of Millimeter Wave Power Ampliers in Silicon

Download or read book Design of Millimeter Wave Power Ampliers in Silicon written by Nader Kalantari and published by . This book was released on 2013 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this dissertation focuses on the millimeter-wave power amplifier in silicon where both switching and linear power amplifiers were investigated. In Chapter 2, a Q-band, Class-E power amplifier has been designed and fabricated in a 120 nm SiGe BiCMOS technology. The amplifier was designed for high output power using on-chip power combining networks. It operates respectively from a 1.2 V supply for peak efficiency and a 2.4 V supply for maximum power and occupies an area of 0.801 mm2. A peak PAE of 18% is measured for an output power of 11.3 dBm at 45 GHz and a maximum of 19.4 dBm is measured at 42 GHz with a PAE of 14.4%. The power amplifier operates from 42 to 50 GHz. Chapter 3, presents a W-band, tapered constructive wave power amplifier (TCWPA) that has been designed and fabricated in a 120 nm SiGe BiCMOS technology. The amplifier has a 3 dB BW of 19 GHz from 91-110 GHz and a maximum gain of 12.5 dB at 101 GHz. At 98 GHz, OP1dB is 4.9 dBm. At 97 GHz, saturated output power is 5.9 dBm and the PAE is 7.2%. The amplifier operates from a 2.4 V supply and occupies an area of 0.22 mm2. A novel circuit topology for power amplifier was introduced in Chapter 4 where only one network is used to provide both input and output matching. This new topology incorporates a feedback network around the transistor to satisfy matching requirements. Circuit parameters can be tuned for small- and large-signal circuit operation. The power amplifier is fabricated in a 120 nm SiGe BiCMOS process and performs from 36 to 41 GHz. The PA achieves a saturated output power of 23 dBm and a peak power added efficiency of 20% at 38 GHz. The second part of this dissertation focuses on the performance analysis of phase-interpolated dual loop clock and data recovery. It presents a four channel receiver for high-speed signal conditioning. Each channel consists of a continuous time linear equalizer (CTLE) and a dual loop CDR with phase-interpolator. All channels share a single PLL that generates and distributes quadrature clock phases to each CDR for data recovery. Clock amplitude, phase INL and phase DNL are derived for IQ phase error and predict phase-dependent jitter contributions to the recovered clock. The multilane receiver was designed in 130 nm CMOS technology. The die occupies an area of 1930 [mu]m by 1250 [mu]m and consumes 67.9 mW per channel. It achieves a maximum data rate of 7 Gbps per channel for 0 and ±200 ppm clock frequency deviation. Quadrature clocks are used in locking mechanism of phase-interpolated CDRs. Due to circuit non-idealities, any mismatch in the quadraure phase causes jitter increase and ultimately increase of bit error rate. The material is presented in Chapter 5.

Book Microwave and Millimetre Wave Design for Wireless Communications

Download or read book Microwave and Millimetre Wave Design for Wireless Communications written by Ian Robertson and published by John Wiley & Sons. This book was released on 2016-08-29 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a full range of contemporary techniques for the design of transmitters and receivers for communications systems operating in the range from 1 through to 300 GHz. In this frequency range there is a wide range of technologies that need to be employed, with silicon ICs at the core but, compared with other electronics systems, a much greater use of more specialist devices and components for high performance – for example, high Q-factor/low loss and good power efficiency. Many text books do, of course, cover these topics but what makes this book timely is the rapid adoption of millimetre-waves (frequencies from 30 to 300 GHz) for a wide range of consumer applications such as wireless high definition TV, '5G' Gigabit mobile internet systems and automotive radars. It has taken many years to develop low-cost technologies for suitable transmitters and receivers, so previously these frequencies have been employed only in expensive military and space applications. The book will cover these modern technologies, with the follow topics covered; transmitters and receivers, lumped element filters, tranmission lines and S-parameters, RF MEMS, RFICs and MMICs, and many others. In addition, the book includes extensive line diagrams to illustrate circuit diagrams and block diagrams of systems, including diagrams and photographs showing how circuits are implemented practically. Furthermore, case studies are also included to explain the salient features of a range of important wireless communications systems. The book is accompanied with suitable design examples and exercises based on the Advanced Design System – the industry leading CAD tool for wireless design. More importantly, the authors have been working with Keysight Technologies on a learning & teaching initiative which is designed to promote access to industry-standard EDA tools such as ADS. Through its University Educational Support Program, Keysight offers students the opportunity to request a student license, backed up with extensive classroom materials and support resources. This culminates with students having the chance to demonstrate their RF/MW design and measurement expertise through the Keysight RF & Microwave Industry-Ready Student Certification Program. www.keysight.com/find/eesof-university www.keysight.com/find/eesof-student-certification

Book Millimeter Wave Circuits for 5G and Radar

Download or read book Millimeter Wave Circuits for 5G and Radar written by Gernot Hueber and published by Cambridge University Press. This book was released on 2019-06-20 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the concepts, architectures, components, tools, and techniques needed to design millimeter-wave circuits for current and emerging wireless system applications. Focusing on applications in 5G, connectivity, radar, and more, leading experts in radio frequency integrated circuit (RFIC) design provide a comprehensive treatment of cutting-edge physical-layer technologies for radio frequency (RF) transceivers - specifically RF, analog, mixed-signal, and digital circuits and architectures. The full design chain is covered, from system design requirements through to building blocks, transceivers, and process technology. Gain insight into the key novelties of 5G through authoritative chapters on massive MIMO and phased arrays, and learn about the very latest technology developments, such as FinFET logic process technology for RF and millimeter-wave applications. This is an essential reading and an excellent reference for high-frequency circuit designers in both academia and industry.

Book Millimeter Wave Low Noise Amplifiers

Download or read book Millimeter Wave Low Noise Amplifiers written by Mladen Božanić and published by Springer. This book was released on 2017-11-30 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first standalone book that combines research into low-noise amplifiers (LNAs) with research into millimeter-wave circuits. In compiling this book, the authors have set two research objectives. The first is to bring together the research context behind millimeter-wave circuit operation and the theory of low-noise amplification. The second is to present new research in this multi-disciplinary field by dividing the common LNA configurations and typical specifications into subsystems, which are then optimized separately to suggest improvements in the current state-of-the-art designs. To achieve the second research objective, the state-of-the-art LNA configurations are discussed and the weaknesses of state-of the art configurations are considered, thus identifying research gaps. Such research gaps, among others, point towards optimization – at a systems and microelectronics level. Optimization topics include the influence of short wavelength, layout and crosstalk on LNA performance. Advanced fabrication technologies used to decrease the parasitics of passive and active devices are also explored, together with packaging technologies such as silicon-on-chip and silicon-on-package, which are proposed as alternatives to traditional IC implementation. This research outcome builds through innovation. Innovative ideas for LNA construction are explored, and alternative design methodologies are deployed, including LNA/antenna co-design or utilization of the electronic design automation in the research flow. The book also offers the authors’ proposal for streamlined automated LNA design flow, which focuses on LNA as a collection of highly optimized subsystems.

Book RF and Microwave Transistor Oscillator Design

Download or read book RF and Microwave Transistor Oscillator Design written by Andrei Grebennikov and published by John Wiley & Sons. This book was released on 2007-04-30 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increase of consumer electronics and communications applications using Radio Frequency (RF) and microwave circuits has implications for oscillator design. Applications working at higher frequencies and using novel technologies have led to a demand for more robust circuits with higher performance and functionality, but decreased costs, size and power consumption. As a result, there is also a need for more efficient oscillators. This book presents up to date information on all aspects of oscillator design, enabling a selection of the best oscillator topologies with optimized noise reduction and electrical performance. RF and Microwave Transistor Oscillator Design covers: analyses of non-linear circuit design methods including spectral-domain analysis, time-domain analysis and the quasilinear method; information on noise in oscillators including chapters on varactor and oscillator frequency tuning, CMOS voltage-controlled oscillators and wideband voltage-controlled oscillators; information on the stability of oscillations, with discussions on the stability of multi-resonant circuits and the phase plane method; optimized design and circuit techniques, beginning with the empirical and analytic design approaches, moving on to the high-efficiency design technique; general operation and design principles of oscillators, including a section on the historical aspects of oscillator configurations. A valuable reference for practising RF and Microwave designers and engineers, RF and Microwave Transistor Oscillator Design is also useful for lecturers, advanced students and research and design (R&D) personnel.

Book State of the Art of Millimeter Wave Silicon Technology

Download or read book State of the Art of Millimeter Wave Silicon Technology written by Jaco du Preez and published by Springer Nature. This book was released on 2022-09-20 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the critical differences between current and next-generation Si technologies (CMOS, BiCMOS and SiC) and technology platforms (e.g. system-on-chip) in mm-wave wireless applications. We provide a basic overview of the two technologies from a technical standpoint, followed by a review of the state-of-the-art of several key building blocks in wireless systems. The influences of system requirements on the choice of semiconductor technology are vital to understanding the merits of CMOS and BiCMOS devices – e.g., output power, battery life, adjacent channel interference, cost restrictions, and so forth. These requirements, in turn, affect component-level design and performance metrics of oscillators, mixers, power and low-noise amplifiers, as well as phase-locked loops and data converters. Finally, the book offers a peek into the next generation of wireless technologies such as THz -band systems and future 6G applications.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.