EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design of Low Voltage Low Power CMOS Delta Sigma A D Converters

Download or read book Design of Low Voltage Low Power CMOS Delta Sigma A D Converters written by Vincenzo Peluso and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of a systematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.

Book The Design of Low Voltage  Low Power Sigma Delta Modulators

Download or read book The Design of Low Voltage Low Power Sigma Delta Modulators written by Shahriar Rabii and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.

Book Low Power Low Voltage Sigma Delta Modulators in Nanometer CMOS

Download or read book Low Power Low Voltage Sigma Delta Modulators in Nanometer CMOS written by Libin Yao and published by Springer Science & Business Media. This book was released on 2006-07-09 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: this book is not suitable for the bookstore catalogue

Book CMOS Sigma Delta Converters

Download or read book CMOS Sigma Delta Converters written by Jose M. de la Rosa and published by John Wiley & Sons. This book was released on 2013-03-13 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Sigma-Delta Analog-to-Digital Converters (ADCs) and a practical guide to their design in nano-scale CMOS for optimal performance. This book presents a systematic and comprehensive compilation of sigma-delta converter operating principles, the new advances in architectures and circuits, design methodologies and practical considerations − going from system-level specifications to silicon integration, packaging and measurements, with emphasis on nanometer CMOS implementation. The book emphasizes practical design issues – from high-level behavioural modelling in MATLAB/SIMULINK, to circuit-level implementation in Cadence Design FrameWork II. As well as being a comprehensive reference to the theory, the book is also unique in that it gives special importance on practical issues, giving a detailed description of the different steps that constitute the whole design flow of sigma-delta ADCs. The book begins with an introductory survey of sigma-delta modulators, their fundamentals architectures and synthesis methods covered in Chapter 1. In Chapter 2, the effect of main circuit error mechanisms is analysed, providing the necessary understanding of the main practical issues affecting the performance of sigma-delta modulators. The knowledge derived from the first two chapters is presented in the book as an essential part of the systematic top-down/bottom-up synthesis methodology of sigma-delta modulators described in Chapter 3, where a time-domain behavioural simulator named SIMSIDES is described and applied to the high-level design and verification of sigma-delta ADCs. Chapter 4 moves farther down from system-level to the circuit and physical level, providing a number of design recommendations and practical recipes to complete the design flow of sigma-delta modulators. To conclude the book, Chapter 5 gives an overview of the state-of-the-art sigma-delta ADCs, which are exhaustively analysed in order to extract practical design guidelines and to identify the incoming trends, design challenges as well as practical solutions proposed by cutting-edge designs. Offers a complete survey of sigma-delta modulator architectures from fundamentals to state-of-the art topologies, considering both switched-capacitor and continuous-time circuit implementations Gives a systematic analysis and practical design guide of sigma-delta modulators, from a top-down/bottom-up perspective, including mathematical models and analytical procedures, behavioural modeling in MATLAB/SIMULINK, macromodeling, and circuit-level implementation in Cadence Design FrameWork II, chip prototyping, and experimental characterization. Systematic compilation of cutting-edge sigma-delta modulators Complete description of SIMSIDES, a time-domain behavioural simulator implemented in MATLAB/SIMULINK Plenty of examples, case studies, and simulation test benches, covering the different stages of the design flow of sigma-delta modulators A number of electronic resources, including SIMSIDES, the statistical data used in the state-of-the-art survey, as well as many design examples and test benches are hosted on a companion website Essential reading for Researchers and electronics engineering practitioners interested in the design of high-performance data converters integrated in nanometer CMOS technologies; mixed-signal designers.

Book Sigma Delta Converters  Practical Design Guide

Download or read book Sigma Delta Converters Practical Design Guide written by Jose M. de la Rosa and published by John Wiley & Sons. This book was released on 2018-08-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.

Book Switched Current Design and Implementation of Oversampling A D Converters

Download or read book Switched Current Design and Implementation of Oversampling A D Converters written by Nianxiong Tan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switched-Current Design and Implementation of Oversampling A/D Converters discusses the switched-current (SI) technique and its application in oversampling A/D converters design. The SI technique is an analog sampled-data technique that fully exploits the digital CMOS process. Compared with the traditional switched-capacitor (SC) technique, the SI technique has both pros and cons that are highlighted in the book. With the consideration of similarity and difference of SI and SC techniques, oversampling A/D converter architectures are tailored and optimized for SI design and implementation in the book. Switched-Current Design and Implementation of Oversampling A/D Converters emphasizes the practical aspects of SI circuits without tedious mathematical derivations, and is full of circuit design and implementation examples. There are more than 10 different chips included in the book, demonstrating the high-speed (over 100 MHz) and ultra-low-voltage (1.2 V) operation of SI circuits and systems in standard digital CMOS processes. Therefore, the book is of special value as a practical guide for designing SI circuits and SI oversampling A/D converters. Switched-Current Design and Implementation of Oversampling A/D Converters serves as an excellent reference for analog designers, especially A/D converter designers, and is of interest to digital designers for real-time signal processing who need A/D interfaces. The book may also be used as a text for advanced courses on the subject.

Book High Resolution and High Speed Integrated CMOS AD Converters for Low Power Applications

Download or read book High Resolution and High Speed Integrated CMOS AD Converters for Low Power Applications written by Weitao Li and published by Springer. This book was released on 2017-08-01 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a step-by-step tutorial on how to design a low-power, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) integrated CMOS analog-to-digital (AD) converter, to respond to the challenge from the rapid growth of IoT. The discussion includes design techniques on both the system level and the circuit block level. In the architecture level, the power-efficient pipelined AD converter, the hybrid AD converter and the time-interleaved AD converter are described. In the circuit block level, the reference voltage buffer, the opamp, the comparator, and the calibration are presented. Readers designing low-power and high-performance AD converters won’t want to miss this invaluable reference. Provides an in-depth introduction to the newest design techniques for the power-efficient, high-resolution (not less than 12 bit), and high-speed (not less than 200 MSps) AD converter; Presents three types of power-efficient architectures of the high-resolution and high-speed AD converter; Discusses the relevant circuit blocks (i.e., the reference voltage buffer, the opamp, and the comparator) in two aspects, relaxing the requirements and improving the performance.

Book Sigma Delta Converters  Practical Design Guide

Download or read book Sigma Delta Converters Practical Design Guide written by Jose M. de la Rosa and published by John Wiley & Sons. This book was released on 2018-08-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thoroughly revised and expanded to help readers systematically increase their knowledge and insight about Sigma-Delta Modulators Sigma-Delta Modulators (SDMs) have become one of the best choices for the implementation of analog/digital interfaces of electronic systems integrated in CMOS technologies. Compared to other kinds of Analog-to-Digital Converters (ADCs), Σ∆Ms cover one of the widest conversion regions of the resolution-versus-bandwidth plane, being the most efficient solution to digitize signals in an increasingly number of applications, which span from high-resolution low-bandwidth digital audio, sensor interfaces, and instrumentation, to ultra-low power biomedical systems and medium-resolution broadband wireless communications. Following the spirit of its first edition, Sigma-Delta Converters: Practical Design Guide, 2nd Edition takes a comprehensive look at SDMs, their diverse types of architectures, circuit techniques, analysis synthesis methods, and CAD tools, as well as their practical design considerations. It compiles and updates the current research reported on the topic, and explains the multiple trade-offs involved in the whole design flow of Sigma-Delta Modulators—from specifications to chip implementation and characterization. The book follows a top-down approach in order to provide readers with the necessary understanding about recent advances, trends, and challenges in state-of-the-art Σ∆Ms. It makes more emphasis on two key points, which were not treated so deeply in the first edition: It includes a more detailed explanation of Σ∆Ms implemented using Continuous-Time (CT) circuits, going from system-level synthesis to practical circuit limitations. It provides more practical case studies and applications, as well as a deeper description of the synthesis methodologies and CAD tools employed in the design of Σ∆ converters. Sigma-Delta Converters: Practical Design Guide, 2nd Edition serves as an excellent textbook for undergraduate and graduate students in electrical engineering as well as design engineers working on SD data-converters, who are looking for a uniform and self-contained reference in this hot topic. With this goal in mind, and based on the feedback received from readers, the contents have been revised and structured to make this new edition a unique monograph written in a didactical, pedagogical, and intuitive style.

Book Delta Sigma Modulators

    Book Details:
  • Author : George I. Bourdopoulos
  • Publisher : Imperial College Press
  • Release : 2003
  • ISBN : 9781848161214
  • Pages : 264 pages

Download or read book Delta Sigma Modulators written by George I. Bourdopoulos and published by Imperial College Press. This book was released on 2003 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book deals with the modeling and design of higher-order single-stage delta-sigma modulators. It provides an overview of the architectures, the quantizer models, the design techniques and the implementation issues encountered in the study of the delta-sigma modulators. A number of applications are discussed, with emphasis on use in the design of analog-to-digital converters and in frequency synthesis. The book is education- rather than research-oriented, containing numerical examples and unsolved problems. It is aimed at introducing the final-year undergraduate, the graduate student or the electronic engineer to this field. Contents: Analog to Digital Conversion; ou Modulators OCo Architectures; Single-Bit Single-Stage ou Modulators, Modeling and Design; Implementation of ou Modulators; Practical Limitations of ou Modulators; Stabilization and Suppression of Tones for the Higher-Order Single-Stage ou Modulators; Decimation, Interpolation and Converters; Applications. Readership: Final-year undergraduates; graduate students; electrical, electronic and systems engineers."

Book Analog Circuit Design

Download or read book Analog Circuit Design written by Johan Huijsing and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Johan H. Huijsing This book contains 18 tutorial papers concentrated on 3 topics, each topic being covered by 6 papers. The topics are: Low-Noise, Low-Power, Low-Voltage Mixed-Mode Design with CAD Tools Voltage, Current, and Time References The papers of this book were written by top experts in the field, currently working at leading European and American universities and companies. These papers are the reviewed versions of the papers presented at the Workshop on Advances in Analog Circuit Design. which was held in Villach, Austria, 26-28 April 1995. The chairman of the Workshop was Dr. Franz Dielacher from Siemens, Austria. The program committee existed of Johan H. Huijsing from the Delft University of Technology, Prof.Willy Sansen from the Catholic University of Leuven, and Dr. Rudy 1. van der Plassche from Philips Eindhoven. This book is the fourth of aseries dedicated to the design of analog circuits. The topics which were covered earlier were: Operational Amplifiers Analog to Digital Converters Analog Computer Aided Design Mixed AlD Circuit Design Sensor Interface Circuits Communication Circuits Low-Power, Low-Voltage Integrated Filters Smart Power As the Workshop will be continued year by year, a valuable series of topics will be built up from all the important areas of analog circuit design. I hope that this book will help designers of analog circuits to improve their work and to speed it up.

Book Continuous Time Delta Sigma Modulators for High Speed A D Conversion

Download or read book Continuous Time Delta Sigma Modulators for High Speed A D Conversion written by James A. Cherry and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.

Book Switched Current Signal Processing and A D Conversion Circuits

Download or read book Switched Current Signal Processing and A D Conversion Circuits written by Bengt E. Jonsson and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switched-Current Signal Processing and A/D Conversion Circuits: Design and Implementation describes the design and implementation of switched-current (SI) circuits with emphasis on signal processing and data-conversion applications. The work includes theoretical analysis, high-level and circuit-level simulation results as well as measurement results from a few of the author's circuit implementations. An extensive overview of the SI field of research is also given. The book contains an extensive overview of the switched-current field of research, and can therefore be used as a quick-reference to the field. The description of each design example has been organized to describe the entire design flow from system level design and simulation, to circuit simulation, layout and measurement as accurately as possible. Thus it is possible to follow each step in the design process. Switched-Current Signal Processing and A/D Conversion Circuits: Design and Implementation is an invaluable reference for researchers and circuit designers working with one-chip mixed-signal system solutions, and low-voltage analog CMOS design. It will also be appreciated by anyone requiring a quick overview of what has been done in the SI field.

Book Analog Circuit Design

Download or read book Analog Circuit Design written by Michiel Steyaert and published by Springer Science & Business Media. This book was released on 2011-09-15 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analog Circuit Design contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Topic 1 : Low Voltage Low Power, chairman: Andrea Baschirotto Topic 2 : Short Range Wireless Front-Ends, chairman: Arthur van Roermund Topic 3 : Power Management and DC-DC, chairman : Michiel Steyaert. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.

Book Design of Multi Bit Delta Sigma A D Converters

Download or read book Design of Multi Bit Delta Sigma A D Converters written by Yves Geerts and published by Springer Science & Business Media. This book was released on 2005-12-30 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses both architecture and circuit design aspects of Delta-Sigma A/D converters, with a special focus on multi-bit implementations. The emphasis is on high-speed high-resolution converters in CMOS for ADSL applications, although the material can also be applied for other specification goals and technologies.

Book Low Power High Resolution Analog to Digital Converters

Download or read book Low Power High Resolution Analog to Digital Converters written by Amir Zjajo and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously. The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.

Book Continuous Time Sigma Delta A D Conversion

Download or read book Continuous Time Sigma Delta A D Conversion written by Friedel Gerfers and published by Springer Science & Business Media. This book was released on 2006-02-27 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sigma-delta A/D converters are a key building block in wireless and multimedia applications. This comprehensive book deals with all relevant aspects arising during the analysis, design and simulation of the now widespread continuous-time implementations of sigma-delta modulators. The results of several years of research by the authors in the field of CT sigma-delta modulators are covered, including the analysis and modeling of different CT modulator architectures, CT/DT loop filter synthesis, a detailed error analysis of all components, and possible compensation/correction schemes for the non-ideal behavior in CT sigma-delta modulators. Guidance for obtaining low-power consumption and several practical implementations are also presented. It is shown that all the proposed new theories, architectures and possible correction techniques have been confirmed by measurements on discrete or integrated circuits. Quantitative results are also provided, thus enabling prediction of the resulting accuracy.

Book Design and Analysis of Integrator Based Log Domain Filter Circuits

Download or read book Design and Analysis of Integrator Based Log Domain Filter Circuits written by Gordon W. Roberts and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title deals with the design and analysis of log-domain filter circuits. It describes synthesis methods for developing bipolar or BiCMOS filter circuits with cut-off frequencies ranging from the low kilohertz range to several hundred megahertz. Numerous examples provide measured experimental data from IC prototypes.