EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design  Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

Download or read book Design Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator written by Hak Yi and published by . This book was released on 2013 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148298

Book Repetitive Motion Planning and Control of Redundant Robot Manipulators

Download or read book Repetitive Motion Planning and Control of Redundant Robot Manipulators written by Yunong Zhang and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China; Zhijun Zhang is a research fellow working at the same institute.

Book Motion Design  Control and Implementation in Robot Manipulators

Download or read book Motion Design Control and Implementation in Robot Manipulators written by Geoffrey William Vernon and published by . This book was released on 1988 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Studies Of Flexible Robotic Manipulators  Modeling  Design  Control And Applications

Download or read book Advanced Studies Of Flexible Robotic Manipulators Modeling Design Control And Applications written by Yanqing Gao and published by World Scientific. This book was released on 2003-08-14 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible robotic manipulators pose various challenges in research as compared to rigid robotic manipulators, ranging from system design, structural optimization, and construction to modeling, sensing, and control. Although significant progress has been made in many aspects over the last one-and-a-half decades, many issues are not resolved yet, and simple, effective, and reliable controls of flexible manipulators still remain an open quest. Clearly, further efforts and results in this area will contribute significantly to robotics (particularly automation) as well as its application and education in general control engineering. To accelerate this process, the leading experts in this important area present in this book the state of the art in advanced studies of the design, modeling, control and applications of flexible manipulators.

Book Design  Control  and Reconfiguration Planning for Octagonal Modular Robot

Download or read book Design Control and Reconfiguration Planning for Octagonal Modular Robot written by 許銘全 and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Adaptive Control for Robotic Manipulators

Download or read book Adaptive Control for Robotic Manipulators written by Dan Zhang and published by CRC Press, Taylor & Francis Group, CRC Press is. This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cover -- Half title -- Title Page -- Copyright page -- Table of Contents -- Preface -- 1: From MRAC to Learning-Based MPC: The Emerging Importance of Machine Learning for Control of Robot Manipulators -- 2: Discussion on Model Reference Adaptive Control of Robotic Manipulators -- 3: Data-Based Learning for Uncertain Robotic Systems -- 4: Reinforcement Learning of Robotic Manipulators -- 5: Adaptive Control for Multi-Fingered Robot Hands -- 6: Output Feedback Adaptive Control of Uncertain Dynamical Systems with Event-Triggering -- 7: Event Sampled Adaptive Control of Robot Manipulators and Mobile Robot Formations -- 8: Design, Integration and Analysis of a Hybrid Controller for Multi Degrees of Freedom Serial Mechanisms -- 9: Adaptive Control of Modular Ankle Exoskeletons in Neurologically Disabled Populations -- 10: Open Architecture High Value Added Robot Manufacturing Cells -- 11: The Adaptive Control Algorithm for Manipulators with Joint Flexibility -- 12: Unification of Bipedal Robotic Walking using Quadratic Program-based Control Lyapunov Function: Applications to Regulation of ZMP and Angular Momentum -- 13: Robust Adaptive Nonlinear Control for Robotic Manipulators with Flexible Joints -- 14: Adaptive Switching Iterative Learning Control of Robot Manipulator -- 15: Adaptive Robust Control Design for Robot Manipulators Based on Online Estimation of the Lumped Time-Varying Model Uncertainties -- 16: Evaluation of Microgenetic and Microimmune Algorithms for Solving Inverse Kinematics of Hyper-redundant Robotic Manipulators On-line -- Index

Book Design  Fabrication  and Control of Soft Robots with Fluidic Elastomer Actuators

Download or read book Design Fabrication and Control of Soft Robots with Fluidic Elastomer Actuators written by Andrew Dominic Marchese and published by . This book was released on 2015 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this thesis is to explore how autonomous robotic systems can be created with soft elastomer bodies powered by fluids. In this thesis we innovate in the design, fabrication, control, and experimental validation of both single and multi-segment soft fluidic elastomer robots. First, this thesis describes an autonomous fluidic elastomer robot that is both self-contained and capable of rapid, continuum body motion. Specifically, the design, modeling, fabrication, and control of a soft fish is detailed, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot on-board: power, actuation, processing, and control. At the core of the fish's soft body is an array of Fluidic Elastomer Actuators (FEAs). The fish is designed to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared to studies on biological fish. During escape responses, the soft-bodied robot is shown to have similar input-output relationships to those observed in biological fish. The major implication of this portion of the thesis is that a soft fluidic elastomer robot is shown to be both self-contained and capable of rapid body motion. Next, this thesis provides an approach to planar manipulation using soft fluidic elastomer robots. That is, novel approaches to design, fabrication, kinematic modeling, power, control, and planning as well as extensive experimental evaluations with multiple manipulator prototypes are presented. More specifically, three viable manipulator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their actuator structures, namely: ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax- based casting. Furthermore, two ways of fabricating a multiple DOF manipulator are explored: casting the complete manipulator as a whole, and casting single DOF segments with subsequent concatenation. An approach to closed-loop configuration control is presented using a piecewise constant curvature kinematic model, real-time localization data, and novel fluidic drive cylinders which power actuation. Multi-segment forward and inverse kinematic algorithms are developed and combined with the configuration controller to provide reliable task-space position control. Building on these developments, a suite of task-space planners are presented to demonstrate new autonomous capabilities from these soft robots such as: (i) tracking a path in free-space, (ii) maneuvering in confined environments, and (iii) grasping and placing objects. Extensive evaluations of these capabilities with physical prototypes demonstrate that manipulation with soft fluidic elastomer robots is viable. Lastly, this thesis presents a robotic manipulation system capable of autonomously positioning a multi-segment soft fluidic elastomer robot in three dimensions while subject to the self-loading effects of gravity. Specifically, an extremely soft robotic manipulator morphology that is composed entirely from low durometer elastomer, powered by pressurized air, and designed to be both modular and durable is presented. To understand the deformation of a single arm segment, a static physics-based model is developed and experimentally validated. Then, to kinematically model the multi-segment manipulator, a piece-wise constant curvature assumption consistent with more traditional continuum manipulators is used. Additionally, a complete fabrication process for this new manipulator is defined and used to make multiple functional prototypes. In order to power the robot's spatial actuation, a high capacity fluidic drive cylinder array is implemented, providing continuously variable, closed-circuit gas delivery. Next, using real-time localization data, a processing and control algorithm is developed that generates realizable kinematic curvature trajectories and controls the manipulator's configuration along these trajectories. A dynamic model for this multi-body fluidic elastomer manipulator is also developed along with a strategy for independently identifying all unknown components of the system: the soft manipulator, its distributed fluidic elastomer actuators, as well as its drive cylinders. Next, using this model and trajectory optimization techniques locally-optimal, open-loop control policies are found. Lastly, new capabilities offered by this soft fluidic elastomer manipulation system are validated with extensive physical experiments. These are: (i) entering and advancing through confined three-dimensional environments, (ii) conforming to goal shape-configurations within a sagittal plane under closed-loop control, and (iii) performing dynamic maneuvers we call grabs.

Book Robot Manipulator Control

Download or read book Robot Manipulator Control written by Frank L. Lewis and published by CRC Press. This book was released on 2003-12-12 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.

Book Optimal Motion Planning and Control of Manipulator

Download or read book Optimal Motion Planning and Control of Manipulator written by Hong Tae Jeon and published by . This book was released on 1986 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Robotic Arm Control in 3D

Download or read book Robotic Arm Control in 3D written by Joshi S and published by . This book was released on 2024-01-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Joshi S work, "Robotic Arm Control in 3D," takes readers into the intriguing realm of robotic manipulators in three-dimensional Euclidean space. This book provides an approachable manual for learning how to manage n-link flexible robotic arms. Joshi S simplifies difficult ideas into language that is easy to grasp, making this book suitable for a variety of readers, including professionals and students who are interested in robotics. The author explores the fundamentals of operating robotic arms, including dynamics, feedback control, kinematics, and motion planning. The comprehensive field of robotic arm control will be easier for readers to traverse with the help of useful tips and real-world examples. This book is a great resource for anyone interested in learning more about the technology behind these amazing devices, whether they are experienced roboticists or aspiring engineers. Expert in the area Joshi S provides readers with a thorough understanding of 3D robotic arm control by sharing his wealth of experience and knowledge. For individuals who want to utilise flexible robotic manipulators in a variety of industries, such as manufacturing or healthcare, "Robotic Arm Control in 3D" is a must-read.

Book Realtime Motion Planning for Manipulator Robots Under Dynamic Environments

Download or read book Realtime Motion Planning for Manipulator Robots Under Dynamic Environments written by Olabanjo Ogunlowore and published by . This book was released on 2013 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report presents optimal control methods integrated with hierarchical control framework to realize real-time collision-free optimal trajectories for motion control in kinematic chain manipulator (KCM) robot systems under dynamic environments. Recently, they have been increasingly used in applications where manipulators are required to interact with random objects and humans. As a result, more complex trajectory planning schemes are required. The main objective of this research is to develop new motion control strategies that can enable such robots to operate efficiently and optimally in such unknown and dynamic environments. Two direct optimal control methods: The direct collocation method and discrete mechanics for optimal control methods are investigated for solving the related constrained optimal control problem and the results are compared. Using the receding horizon control structure, open-loop sub-optimal trajectories are generated as real-time input to the controller as opposed to the predefined trajectory over the entire time duration. This, in essence, captures the dynamic nature of the obstacles. The closed-loop position controller is then engaged to span the robot end-effector along this desired optimal path by computing appropriate torque commands for the joint actuators. Employing a two-degree of freedom technique, collision-free trajectories and robot environment information are transmitted in real-time by the aid of a bidirectional connectionless datagram transfer. A hierarchical network control platform is designed to condition triggering of precedent activities between a dedicated machine computing the optimal trajectory and the real-time computer running a low-level controller. Experimental results on a 2-link planar robot are presented to validate the main ideas. Real-time implementation of collision-free workspace trajectory control is achieved for cases where obstacles are arbitrarily changing in the robot workspace.

Book Controller Design for a Robotic Manipulator

Download or read book Controller Design for a Robotic Manipulator written by Dong-Jin Lim and published by . This book was released on 1988 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design of an advanced  high precision  seven degree of freedom modular robotic manipulator

Download or read book Design of an advanced high precision seven degree of freedom modular robotic manipulator written by Mark Randolph Marrs and published by . This book was released on 1997 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1994 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: