EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Field Investigation of Bridge Deck Reinforced with Glass Fiber Reinforced Polymer  GFRP  Rebar

Download or read book Field Investigation of Bridge Deck Reinforced with Glass Fiber Reinforced Polymer GFRP Rebar written by Behrouz Shafei and published by . This book was released on 2020 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Minnesota Department of Transportation (MnDOT) constructed its first glass fiber polymer (GFRP) reinforced bridge deck on MN 42 over Dry Creek just north of Elgin, Minnesota. Successful implementation of the GFRP reinforced bridge decks would eliminate the steel corrosion problems that often shorten the life of the deck. Although there has been wide use of GFRP reinforcement in bridge decks in some parts of Canada, there have been relatively few GFRP reinforced bridge decks built in the United States. The Canadian decks were primarily designed using the empirical design method in the Canadian Highway Bridge Design Code. This method differs significantly from thee design guidelines produced by AASHTO and ACI Committee 440 on fiber-reinforced polymer (FRP) reinforcement. To maximize the knowledge and experience gained in constructing this type of bridge decks, this research project investigates the performance of a case-study bridge deck focusing on key issues such as cracking, deck stiffness, load distribution factors, and GFRP rebar strains. The main goals of this project are: • Collect behavior information and response characteristics of the bridge deck under service loads ·Identify the load distribution characteristics, especially for the bridge girders supporting the deck • Examine the short- and long-term durability of the bridge deck in terms of formation and propagation of cracks • Assess the impact of using non-conventional, corrosion-resistant deck reinforcement on maintenance needs and life-cycle cost with a specific interest in including service-life design philosophies. The outcome of this project will directly contribute to the development of guidance and details for the construction of corrosion-resistant bridges with service lives beyond 100 years.

Book FRP Deck and Steel Girder Bridge Systems

Download or read book FRP Deck and Steel Girder Bridge Systems written by Julio F. Davalos and published by CRC Press. This book was released on 2013-03-26 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the analysis and design of fiber-reinforced polymer (FRP) bridge decks, which have been increasingly implemented in rehabilitation projects and new construction due to their reduced weight, lower maintenance costs, and enhanced durability. It compiles the necessary information, based primarily on research by the authors, to facilitate the development of standards and guidelines for using FRP decks in bridge designs. The book combines analytical models, numerical analyses, and experimental investigations, which can be applied to various design formulations. It also, for the first time, offers a complete set of design guidelines.

Book Specification and Design of Fiber Reinforced Bridge Deck Forms for Use on Wide Flange T girders

Download or read book Specification and Design of Fiber Reinforced Bridge Deck Forms for Use on Wide Flange T girders written by and published by . This book was released on 2007 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide-flanged concrete girders are increasingly being used for highway bridges in Wisconsin. The objective of this research was to understand the state of the art of non-metallic SIP forms and to develop design guidelines and performance specifications that can be used locally for the construction of highway bridge decks. Four major types of stay-in-place (SIP) forms using fiber reinforced concrete (FRC) or fiber reinforced polymer (FRP) materials were investigated: fiber reinforcements, grid reinforcements, bar reinforcements and pultruded profiles. The results were used to develop a model design and construction specification for non-structural, non-metallic, SIP forms in highway bridge decks.

Book Proof Testing a Bridge Deck Design with Glass Fiber Reinforced Polymer Bars as Top Mat of Reinforcement

Download or read book Proof Testing a Bridge Deck Design with Glass Fiber Reinforced Polymer Bars as Top Mat of Reinforcement written by Jason Kyle Cawrse and published by . This book was released on 2003 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary objective of this project was to test a full-scale prototype of a bridge deck design containing glass fiber reinforced polymer (GFRP) bars as the top mat of reinforcement. The test deck mimics the design of the deck of one span of the new bridge over Gills Creek on Rt. 668 in Franklin County, Virginia. The purpose of the tests was to verify the deck design and provide assurance that the deck will behave as expected. Aspects of the behavior of the bridge deck, such as failure load, failure mode, cracking load, crack widths, deflections, and internal stresses, were examined. Four tests were performed on the deck, all of which tested the deck in negative moment regions. The tests comprised two overhang tests, one test of the deck over an interior girder, and one test of a cantilever section of the composite deck and girder. The cantilever test modeled the deck in a continuous bridge over an interior support. From the tests, it was concluded that the design of the deck was quite conservative. The secondary objectives of this project were to comment on the construction of a bridge deck reinforced with GFRP bars, note the advantages and disadvantages, and critique the current state of the art of designing bridge decks with GFRP reinforcement. It was found that the advantages of construction with GFRP bars easily outweighed the disadvantages and that the placing of the top mat of GFRP bars was much easier than the placing of the bottom mat of steel bars. The state of the art for the design of bridge decks reinforced with GFRP bars was found to be generally conservative. Three primary criteria dictate the deck design: strength, allowable stresses in the GFRP bars, and crack widths. For this deck, the size and spacing of the transverse GFRP bars were governed by crack control criteria. In testing the deck, however, it was found that the measured crack widths were far smaller than the calculated widths. The measured bar stresses, after cracking, were below those calculated, and below the allowable for all but the cantilever test. The ultimate failure loads were between 3.7 and 7.6 times the design wheel load plus impact. All failures were due to punching shear and were between 91% and 149% of the predicted failure load. Current methods for calculating one-way shear grossly under-predicted capacity. The current design is safe and should prove to be low maintenance. Improvements in design approach, particularly for crack widths and one-way shear, could result in more economical designs in the future. Although current methods for calculating strength and serviceability requirement do not result in accurate predictions of behavior, they do result in conservative designs.

Book Advanced Composites in Bridge Construction and Repair

Download or read book Advanced Composites in Bridge Construction and Repair written by Yail J. Kim and published by Woodhead Pub Limited. This book was released on 2014-05-07 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel. This book summarises key recent research in this area. After an introductory overview and an assessment of bond characteristics between composites and cement, Advanced composites in bridge construction and repair reviews key applications of fiber-reinforced polymer (FRP) composites in bridge construction and repair. These applications include cable-stayed bridges, seismic retrofit of reinforced concrete piers, repair of ageing bridge substructures a.

Book Extended Life Concrete Bridge Decks Utilizing Internal Curing to Reduce Cracking

Download or read book Extended Life Concrete Bridge Decks Utilizing Internal Curing to Reduce Cracking written by Xuhao Wang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the ongoing concern about premature cracking of concrete bridge decks that reduces the service life of bridges and results in increased maintenance and replacement costs, this work aimed at assessing the benefits of using lightweight fine aggregate (LWFA) in concrete mixtures to assist the Ohio Department of Transportation (ODOT) in preparing a specification to increase the probability of achieving crack-free, long-lasting bridge decks. A laboratory testing program led to a recommended mix design for implementation on a bridge construction project in Ohio. The design included the use of 50% slag cement and LWFA for internal curing. Construction of two bridge decks involved a control using a conventional mix design and the other containing the recommended mixture. The decks were instrumented and load tested shortly after construction and inspected one year after placement. No differences in structural performance were noted, but there were far fewer cracks in the test deck compared to the control. A life-cycle cost analysis was also conducted and shown that the premium for the recommended mixture would be recovered in reduced maintenance over the life of the bridge.

Book Bridge Engineering Handbook  Second Edition

Download or read book Bridge Engineering Handbook Second Edition written by Wai-Fah Chen and published by CRC Press. This book was released on 2014-01-24 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of The Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, as well as the various types of bridges. The text includes over 2,500 tables, charts, illustrations and photos. The book covers new, innovative, and traditional methods and practices, explores rehabilitation, retrofit, and maintenance, and examines seismic design, and building materials. The first book, Fundamentals contains 22 chapters, and covers aesthetics, planning, design specifications, structural modeling, fatigue and fracture. What’s New in the Second Edition: • Covers the basic concepts, theory and special topics of bridge engineering • Includes seven new chapters: Finite Element Method, High Speed Railway Bridges, Concrete Design, Steel Design, Structural Performance Indicators for Bridges, High Performance Steel, and Design and Damage Evaluation Methods for Reinforced Concrete Beams under Impact Loading • Provides substantial updates to existing chapters, including Conceptual Design, Bridge Aesthetics: Achieving Structural Art in Bridge Design, and Application of Fiber Reinforced Polymers in Bridges This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.

Book Advanced Composites in Bridge Construction and Repair

Download or read book Advanced Composites in Bridge Construction and Repair written by Yail Jimmy Kim and published by Elsevier. This book was released on 2014-05-16 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel. After an introductory overview and an assessment of the characteristics of bonds between composites and quasi-brittle structures, Advanced Composites in Bridge Construction and Repair reviews the use of advanced composites in the design and construction of bridges, including damage identification and the use of large rupture strain fiber-reinforced polymer (FRP) composites. The second part of the book presents key applications of FRP composites in bridge construction and repair, including the use of all-composite superstructures for accelerated bridge construction, engineered cementitious composites for bridge decks, carbon fiber-reinforced polymer composites for cable-stayed bridges and for repair of deteriorated bridge substructures, and finally the use of FRP composites in the sustainable replacement of ageing bridge superstructures. Advanced Composites in Bridge Construction and Repair is a technical guide for engineering professionals requiring an understanding of the use of composite materials in bridge construction. - Reviews key applications of fiber-reinforced polymer (FRP) composites in bridge construction and repair - Summarizes key recent research in the suitability of advanced composite materials for bridge structures as an alternative to conventional construction materials

Book Bridge Engineering Handbook  Five Volume Set

Download or read book Bridge Engineering Handbook Five Volume Set written by Wai-Fah Chen and published by CRC Press. This book was released on 2014-01-24 with total page 3130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection provides detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject, and also highlights bridges from around the world.Published

Book Innovative Bridge Design Handbook

Download or read book Innovative Bridge Design Handbook written by Alessio Pipinato and published by Elsevier. This book was released on 2021-09-08 with total page 1048 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance, Second Edition, brings together the essentials of bridge engineering across design, assessment, research and construction. Written by an international group of experts, each chapter is divided into two parts: the first covers design issues, while the second presents current research into the innovative design approaches used across the world. This new edition includes new topics such as foot bridges, new materials in bridge engineering and soil-foundation structure interaction. All chapters have been updated to include the latest concepts in design, construction, and maintenance to reduce project cost, increase structural safety, and maximize durability. Code and standard references have been updated. - Completely revised and updated with the latest in bridge engineering and design - Provides detailed design procedures for specific bridges with solved examples - Presents structural analysis including numerical methods (FEM), dynamics, risk and reliability, and innovative structural typologies

Book Fiber Reinforced Polymer  FRP  Composites for Infrastructure Applications

Download or read book Fiber Reinforced Polymer FRP Composites for Infrastructure Applications written by Ravi Jain and published by Springer Science & Business Media. This book was released on 2012-01-02 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines current issues of fiber reinforced polymer (FRP) composites in civil infrastructure. The contents of this book are divided into two parts. The first part engages topics related to durability and service life of FRP composites and how they contribute to sustainability. The second part highlights implementation and applications of the FRP composites with an emphasis on bridge structures. An introductory chapter provides an overview of FRP composites and its role in a sustainable built environment highlighting the issues of durability and service life followed by a current review of sustainability in infrastructure design.​

Book Performance of a Bridge Deck with Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement

Download or read book Performance of a Bridge Deck with Glass Fiber Reinforced Polymer Bars as the Top Mat of Reinforcement written by Kimberly Ann Phillips and published by . This book was released on 2005 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this research was to investigate the performance of glass fiber reinforced polymer (GFRP) bars as reinforcement for concrete decks. Today's rapid bridge deck deterioration is calling for a replacement for steel reinforcement. The advantages of GFRP such as its high tensile strength, light weight, and resistance to corrosion make it an attractive alternative to steel. The deck of one end-span of the Gills Creek Bridge was constructed with GFRP bars as the top mat and epoxy-coated steel bars as the bottom mat. Live load tests were performed in 2003, shortly after completion of construction, and again in 2004. In addition, tests were performed on the deck of the opposite end-span, which had all epoxy-coated steel reinforcing. The results of these tests were used to evaluate the girder distribution factors and impact factors of a GFRP reinforced bridge deck. In addition, a comparison of the results from the two test periods gives an indication of any changes in strains in the GFRP bars and if the deck is behaving differently than when first installed. The results were compared to the design standards specified by the American Concrete Institute in the Guide for the Design and Construction of Concrete Reinforced with FRP Bar to determine if the stresses in the deck were within the specified limits. The performances of the two end-spans were compared to determine if the GFRP reinforcement had any significant influence on overall bridge behavior. There were no significant differences in the behavior of the deck after 1 year of service and there was no visible cracking. The behavior of the two end-spans was similar, and the measured girder distribution factors were less than the AASHTO design recommendations. The impact factors were less than design values for the 2003 tests but higher than design values for the 2004 tests. Stresses in the GFRP reinforcing bars were much less than the design allowable stress and did not change significantly after 1 year of service. The strain gauges, vibrating wire gauges, and thermocouples in the bridge deck were monitored for approximately 1 year using a permanent data acquisition system. Daily, monthly, and long-term fluctuations in temperature and stresses were examined. The vibrating wire gauges were more reliable than the electrical resistance strain gauges, and the main influence on strain changes was temperature fluctuation. A cost/benefit analysis of using GFRP bars indicates their high initial costs are justified when compared to the costs of a concrete overlay.

Book Bridge Engineering Handbook

Download or read book Bridge Engineering Handbook written by Wai-Fah Chen and published by CRC Press. This book was released on 2014-01-24 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of The Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subjec

Book Development of Composite Renewal Systems for Rapid Rehabilitation and Construction of Bridge Decks

Download or read book Development of Composite Renewal Systems for Rapid Rehabilitation and Construction of Bridge Decks written by Anna Beth Pridmore and published by . This book was released on 2009 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The deterioration of steel in aging reinforced concrete bridges is a continual problem which could benefit from improved rehabilitation techniques that take advantage of enhanced and more durable materials such as fiber reinforced polymer (FRP) composites. Appropriately designed hybrid material systems benefit from the performance and durability advantages of FRP materials yet remain more cost effective than comparable all-composite systems. Development of rapid rehabilitation systems for the decks of concrete box girder bridges, which are increasingly common throughout the United States, is presented. One goal of this research is to assess and validate the use of FRP composite panels for use as both stay-in-place formwork and as the bottom longitudinal and transverse reinforcement in the deck of concrete box girder bridges. Performance assessments for full-scale two-cell box girder bridge specimens through monotonic and extensive cyclic loading provided validation for the FRP panel system bridge deck as a viable rehabilitation solution for box girder bridge decks. The FRP panel system performed comparably to a conventionally reinforced concrete bridge deck in terms of serviceability, deflection profiles, and system level structural interaction and performed superior to the RC bridge deck in terms of residual deflections, and structural response under cyclic loading. Assessment of a damaged FRP panel bridge deck system, which was repaired using a resin injection technique, showed superior performance for the repaired system in terms of integrity of the FRP panel interface and cyclic response. Rapid rehabilitation techniques for strengthening reinforced concrete box girder bridge deck overhangs using near-surface-mounted (NSM) carbon fiber reinforced polymer (CFRP) were also evaluated. Analytical predictions of load carrying capacity and deflections provided correlation with experimental results, and the developed analysis methods provide an effective design tool for future research. Results from the laboratory testing of a bridge deck overhang strengthened with FRP showed significant increases in load carrying capacity as well as deformation capacity as compared to the as-built specimen without FRP. This research provides enhanced understanding of hybrid structures and indicates significant potential for rehabilitation applications to concrete box girder bridges.

Book Precast Bridge Deck Joints Using FRP and Ultra high Performance Concrete

Download or read book Precast Bridge Deck Joints Using FRP and Ultra high Performance Concrete written by Augustine Kuuku Banson and published by . This book was released on 2013 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for rapid construction or replacement of highway bridge decks can be addressed by precast concrete elements reinforced with Glass Fiber Reinforced Polymer (GFRP) bars with cast-in-place joints made using Ultra-High Performance Concrete (UHPC). This thesis investigates the bond between GFRP bars and UHPC and splice length optimization to obtain narrow joints and simplified bar geometries. Multiple linear regression analyses of existing bond data indicate that the bar's Young's Modulus and embedded length are the most significant parameters that influence the average bond strength of sand-coated GFRP bars in UHPC: increasing either decreases the average bond strength. Linear-elastic uncracked Finite Element analysis of pull-out specimens indicates that reinforcing bars with low Young's Moduli have highly non-uniform bond distributions along their length and so exhibit high peak bond stresses and low average bond strengths. The higher average bond strengths observed for High Modulus (HM) GFRP bars compared to Low Modulus (LM) GFRP bars is likely because the HM GFRP bars have lower interlaminar shear strength. A methodology for GFRP reinforcement design that synthesizes provisions from the Flexural Design Method in the Canadian Highway Bridge Design Code including an additional new step to determine bar splice lengths in UHPC was developed. Splice lengths and bond resistance factors for HM GFRP bars in UHPC are determined by reliability analysis to resist either bar stresses due to the factored applied moments or the mean ultimate tensile strength of the bar. A significant reduction in splice length can be achieved if splices are designed to resist the bar stresses at factored applied moments. A new resistance factor of 0.5 for bond of GFRP bars in UHPC is also recommended.

Book The International Handbook of FRP Composites in Civil Engineering

Download or read book The International Handbook of FRP Composites in Civil Engineering written by Manoochehr Zoghi and published by CRC Press. This book was released on 2013-09-26 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a wide range of civil infrastructure applications. These include everything from bridge decks, bridge strengthening and repairs, and seismic retrofit to marine waterfront structures and sustainable, energy-efficient housing. The International Handbook of FRP Composites in Civil Engineering brings together a wealth of information on advances in materials, techniques, practices, nondestructive testing, and structural health monitoring of FRP composites, specifically for civil infrastructure. With a focus on professional applications, the handbook supplies design guidelines and standards of practice from around the world. It also includes helpful design formulas, tables, and charts to provide immediate answers to common questions. Organized into seven parts, the handbook covers: FRP fundamentals, including history, codes and standards, manufacturing, materials, mechanics, and life-cycle costs Bridge deck applications and the critical topic of connection design for FRP structural members External reinforcement for rehabilitation, including the strengthening of reinforced concrete, masonry, wood, and metallic structures FRP composites for the reinforcement of concrete structures, including material characteristics, design procedures, and quality assurance–quality control (QA/QC) issues Hybrid FRP composite systems, with an emphasis on design, construction, QA/QC, and repair Quality control, quality assurance, and evaluation using nondestructive testing, and in-service monitoring using structural health monitoring of FRP composites, including smart composites that can actively sense and respond to the environment and internal states FRP-related books, journals, conference proceedings, organizations, and research sources Comprehensive yet concise, this is an invaluable reference for practicing engineers and construction professionals, as well as researchers and students. It offers ready-to-use information on how FRP composites can be more effectively utilized in new construction, repair and reconstruction, and architectural engineering.