EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design Automation of Quantum Computers

Download or read book Design Automation of Quantum Computers written by Rasit O. Topaloglu and published by Springer Nature. This book was released on 2022-12-09 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a comprehensive, state-of-the-art reference to the design automation aspects of quantum computers. Given roadmaps calling for quantum computers with 2000 qubits in a few years, readers will benefit from the practical implementation aspects covered in this book. The authors discuss real hardware to the extent possible. Provides an up-to-date, single-source reference to design automation aspects of quantum computers; Presentation is not just theoretical, but substantiated with real quantum hardware; Covers multi-faceted aspects of quantum computers, providing readers with valuable information, no matter the direction in which technology moves.

Book Introducing Design Automation for Quantum Computing

Download or read book Introducing Design Automation for Quantum Computing written by Alwin Zulehner and published by Springer Nature. This book was released on 2020-04-07 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers readers an easy introduction into quantum computing as well as into the design for corresponding devices. The authors cover several design tasks which are important for quantum computing and introduce corresponding solutions. A special feature of the book is that those tasks and solutions are explicitly discussed from a design automation perspective, i.e., utilizing clever algorithms and data structures which have been developed by the design automation community for conventional logic (i.e., for electronic devices and systems) and are now applied for this new technology. By this, relevant design tasks can be conducted in a much more efficient fashion than before – leading to improvements of several orders of magnitude (with respect to runtime and other design objectives). Describes the current state of the art for designing quantum circuits, for simulating them, and for mapping them to real hardware; Provides a first comprehensive introduction into design automation for quantum computing that tackles practically relevant tasks; Targets the quantum computing community as well as the design automation community, showing both perspectives to quantum computing, and what impressive improvements are possible when combining the knowledge of both communities.

Book Quantum Computing

Download or read book Quantum Computing written by Himanshu Thapliyal and published by Springer Nature. This book was released on 2023-11-24 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with the current state-of-the-art research and technology on quantum computing. The authors provide design paradigms of quantum computing. Topics covered include multi-programming mechanisms on near-term quantum computing, Lagrange interpolation approach for the general parameter-shift rule, architecture-aware decomposition of quantum circuits, software for massively parallel quantum computing, machine learning in quantum annealing processors, quantum annealing for real-world machine learning applications, queuing theory models for (Fault-Tolerant) quantum circuits, machine learning for quantum circuit reliability assessment, and side-channel leakage in Suzuki stack circuits.

Book Towards the Design Automation of Quantum Circuits

Download or read book Towards the Design Automation of Quantum Circuits written by Sidi Mohamed Beillahi and published by . This book was released on 2016 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics based computing systems are expected to have high capabilities and are considered good candidates to replace classical cryptography and supercomputing systems. Among many implementations, quantum optics systems provide a promising platform to implement universal quantum computers, since they link quantum computation and quantum communication in the same framework. Recently, several quantum gates, circuits, and protocols have been experimentally realized using optics. Despite the fact that big advances in building the physical quantum computers were achieved, there are no currently available industrial computer aided tools that can perform the modeling, analysis, and verification of optical quantum computing systems. In this thesis, we tackle the idea of design automation for quantum circuits, where we use a sound language, higher order logic, to model and reason about quantum circuits formally. In particular, we propose a framework for the hierarchical modeling and automated verification of quantum computing circuits. The modeling approach captures quantum models built hierarchically from quantum gates, which models are readily available in a library. The analysis and verification of composed circuits is done seamlessly based on dedicated mathematical foundations formalized in the theorem prover. Specifically, the tensor product and linear projection are used to extract the quantum circuit outputs. Subsequently, a rich library of quantum gates which includes 1-qubit, 2-qubit, and 3-qubit gates is formalized. In order to automate the analysis process, we developed a decision procedure to eliminate the need of user guidance throughout the formal proofs. To demonstrate the effectiveness of the proposed framework, we conduct the formal analysis of a benchmark of quantum circuits including the Shor's integer factorization algorithm, the Grover's oracle, and the quantum full adder.

Book Efficient Implementation of Quantum Circuit Simulation with Decision Diagrams

Download or read book Efficient Implementation of Quantum Circuit Simulation with Decision Diagrams written by Stefan Hillmich and published by Springer Nature. This book was released on 2023-09-27 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an easy-to-read introduction into quantum computing as well as classical simulation of quantum circuits. The authors showcase the enormous potential that can be unleashed when doing these simulations using decision diagrams—a data structure common in the design automation community but hardly used in quantum computing yet. In fact, the covered algorithms and methods are able to outperform previously proposed solutions on certain use cases and, hence, provide a complementary solution to established approaches. The award-winning methods are implemented and available as open-source under free licenses and can be easily integrated into existing frameworks such as IBM’s Qiskit or Atos’ QLM.

Book Quantum Computer Systems

Download or read book Quantum Computer Systems written by Yongshan Ding and published by Springer Nature. This book was released on 2022-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.

Book Quantum Circuit Simulation

Download or read book Quantum Circuit Simulation written by George F. Viamontes and published by Springer Science & Business Media. This book was released on 2009-08-04 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Circuit Simulation covers the fundamentals of linear algebra and introduces basic concepts of quantum physics needed to understand quantum circuits and algorithms. It requires only basic familiarity with algebra, graph algorithms and computer engineering. After introducing necessary background, the authors describe key simulation techniques that have so far been scattered throughout the research literature in physics, computer science, and computer engineering. Quantum Circuit Simulation also illustrates the development of software for quantum simulation by example of the QuIDDPro package, which is freely available and can be used by students of quantum information as a "quantum calculator."

Book Explorations in Quantum Computing

Download or read book Explorations in Quantum Computing written by Colin P. Williams and published by Springer Science & Business Media. This book was released on 2010-12-07 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. "Quantum computing" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers – and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking supposedly "unbreakable" codes, generating true random numbers, and communicating with messages that betray the presence of eavesdropping. This widely anticipated second edition of Explorations in Quantum Computing explains these burgeoning developments in simple terms, and describes the key technological hurdles that must be overcome to make quantum computers a reality. This easy-to-read, time-tested, and comprehensive textbook provides a fresh perspective on the capabilities of quantum computers, and supplies readers with the tools necessary to make their own foray into this exciting field. Topics and features: concludes each chapter with exercises and a summary of the material covered; provides an introduction to the basic mathematical formalism of quantum computing, and the quantum effects that can be harnessed for non-classical computation; discusses the concepts of quantum gates, entangling power, quantum circuits, quantum Fourier, wavelet, and cosine transforms, and quantum universality, computability, and complexity; examines the potential applications of quantum computers in areas such as search, code-breaking, solving NP-Complete problems, quantum simulation, quantum chemistry, and mathematics; investigates the uses of quantum information, including quantum teleportation, superdense coding, quantum data compression, quantum cloning, quantum negation, and quantum cryptography; reviews the advancements made towards practical quantum computers, covering developments in quantum error correction and avoidance, and alternative models of quantum computation. This text/reference is ideal for anyone wishing to learn more about this incredible, perhaps "ultimate," computer revolution. Dr. Colin P. Williams is Program Manager for Advanced Computing Paradigms at the NASA Jet Propulsion Laboratory, California Institute of Technology, and CEO of Xtreme Energetics, Inc. an advanced solar energy company. Dr. Williams has taught quantum computing and quantum information theory as an acting Associate Professor of Computer Science at Stanford University. He has spent over a decade inspiring and leading high technology teams and building business relationships with and Silicon Valley companies. Today his interests include terrestrial and Space-based power generation, quantum computing, cognitive computing, computational material design, visualization, artificial intelligence, evolutionary computing, and remote olfaction. He was formerly a Research Scientist at Xerox PARC and a Research Assistant to Prof. Stephen W. Hawking, Cambridge University.

Book Quantum Computing

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2019-04-27
  • ISBN : 030947969X
  • Pages : 273 pages

Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Book Quantum Computing for Computer Architects  Second Edition

Download or read book Quantum Computing for Computer Architects Second Edition written by Tzvetan Metodi and published by Springer Nature. This book was released on 2022-06-01 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers can (in theory) solve certain problems far faster than a classical computer running any known classical algorithm. While existing technologies for building quantum computers are in their infancy, it is not too early to consider their scalability and reliability in the context of the design of large-scale quantum computers. To architect such systems, one must understand what it takes to design and model a balanced, fault-tolerant quantum computer architecture. The goal of this lecture is to provide architectural abstractions for the design of a quantum computer and to explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation. In this lecture, we provide an engineering-oriented introduction to quantum computation with an overview of the theory behind key quantum algorithms. Next, we look at architectural case studies based upon experimental data and future projections for quantum computation implemented using trapped ions. While we focus here on architectures targeted for realization using trapped ions, the techniques for quantum computer architecture design, quantum fault-tolerance, and compilation described in this lecture are applicable to many other physical technologies that may be viable candidates for building a large-scale quantum computing system. We also discuss general issues involved with programming a quantum computer as well as a discussion of work on quantum architectures based on quantum teleportation. Finally, we consider some of the open issues remaining in the design of quantum computers. Table of Contents: Introduction / Basic Elements for Quantum Computation / Key Quantum Algorithms / Building Reliable and Scalable Quantum Architectures / Simulation of Quantum Computation / Architectural Elements / Case Study: The Quantum Logic Array Architecture / Programming the Quantum Architecture / Using the QLA for Quantum Simulation: The Transverse Ising Model / Teleportation-Based Quantum Architectures / Concluding Remarks

Book Programming Quantum Computers

Download or read book Programming Quantum Computers written by Eric R. Johnston and published by "O'Reilly Media, Inc.". This book was released on 2019-07-03 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.

Book Quantum Computing Devices

Download or read book Quantum Computing Devices written by Goong Chen and published by CRC Press. This book was released on 2006-09-18 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the first books to thoroughly examine the subject, Quantum Computing Devices: Principles, Designs, and Analysis covers the essential components in the design of a "real" quantum computer. It explores contemporary and important aspects of quantum computation, particularly focusing on the role of quantum electronic devices as quantum gates.

Book Quantum Computing for Computer Architects

Download or read book Quantum Computing for Computer Architects written by Tzvetan S. Metodi and published by Springer Nature. This book was released on 2007-12-31 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computation may seem to be a topic for science fiction, but small quantum computers have existed for several years and larger machines are on the drawing table. These efforts have been fueled by a tantalizing property: while conventional computers employ a binary representation that allows computational power to scale linearly with resources at best, quantum computations employ quantum phenomena that can interact to allow computational power that is exponential in the number of "quantum bits" in the system. Quantum devices rely on the ability to control and manipulate binary data stored in the phase information of quantum wave functions that describe the electronic states of individual atoms or the polarization states of photons. While existing quantum technologies are in their infancy, we shall see that it is not too early to consider scalability and reliability. In fact, such considerations are a critical link in the development chain of viable device technologies capable of orchestrating reliable control of tens of millions quantum bits in a large-scale system. The goal of this lecture is to provide architectural abstractions common to potential technologies and explore the systemslevel challenges in achieving scalable, fault-tolerant quantum computation. The central premise of the lecture is directed at quantum computation (QC) architectural issues. We stress the fact that the basic tenet of large-scale quantum computing is reliability through system balance: the need to protect and control the quantum information just long enough for the algorithm to complete execution. To architectQCsystems, onemust understand what it takes to design and model a balanced, fault-tolerant quantum architecture just as the concept of balance drives conventional architectural design. For example, the register file depth in classical computers is matched to the number of functional units, the memory bandwidth to the cache miss rate, or the interconnect bandwidth matched to the compute power of each element of a multiprocessor. We provide an engineering-oriented introduction to quantum computation and provide an architectural case study based upon experimental data and future projection for ion-trap technology.We apply the concept of balance to the design of a quantum computer, creating an architecture model that balances both quantum and classical resources in terms of exploitable parallelism in quantum applications. From this framework, we also discuss the many open issues remaining in designing systems to perform quantum computation.

Book Quantum Computing and Communications

Download or read book Quantum Computing and Communications written by Sandor Imre and published by John Wiley & Sons. This book was released on 2013-05-29 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers will revolutionize the way telecommunications networks function. Quantum computing holds the promise of solving problems that would be intractable with conventional computers by implementing principles from quantum physics in the development of computer hardware, software and communications equipment. Quantum-assisted computing will be the first step towards full quantum systems, and will cause immense disruption of our traditional networks. The world’s biggest manufacturers are investing large amounts of resources to develop crucial quantum-assisted circuits and devices. Quantum Computing and Communications: Gives an overview of basic quantum computing algorithms and their enhanced versions such as efficient database searching, counting and phase estimation. Introduces quantum-assisted solutions for telecom problems including multi-user detection in mobile systems, routing in IP based networks, and secure ciphering key distribution. Includes an accompanying website featuring exercises (with solution manual) and sample algorithms from the classical telecom world, corresponding quantum-based solutions, bridging the gap between pure theory and engineering practice. This book provides telecommunications engineers, as well as graduate students and researchers in the fields of computer science and telecommunications, with a wide overview of quantum computing & communications and a wealth of essential, practical information.

Book Reversible Computation  Extending Horizons of Computing

Download or read book Reversible Computation Extending Horizons of Computing written by Irek Ulidowski and published by Springer Nature. This book was released on 2020-05-13 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first.

Book Quantum Computing for Computer Architects

Download or read book Quantum Computing for Computer Architects written by Tzvetan S. Metodi and published by Morgan & Claypool Publishers. This book was released on 2011 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computation may seem to be a topic for science fiction, but small quantum computers have existed for several years and larger machines are on the drawing table. These efforts have been fueled by a tantalizing property: while conventional computers employ a binary representation that allows computational power to scale linearly with resources at best, quantum computations employ quantum phenomena that can interact to allow computational power that is exponential in the number of quantum bits in the system. Quantum devices rely on the ability to control and manipulate binary data stored in the phase information of quantum wave functions that describe the electronic states of individual atoms or the polarization states of photons. While existing quantum technologies are in their infancy, we shall see that it is not too early to consider scalability and reliability. In fact, such considerations are a critical link in the development chain of viable device technologies capable of orchestrating reliable control of tens of millions quantum bits in a large-scale system. The goal of this lecture is to provide architectural abstractions common to potential technologies and explore the systems-level challenges in achieving scalable, fault-tolerant quantum computation.

Book Foundations of Quantum Programming

Download or read book Foundations of Quantum Programming written by Mingsheng Ying and published by Elsevier. This book was released on 2024-05-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation