EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Optimization of Dielectric Resonator Antenna Arrays Based on Substrate Integrated Waveguide Technology for Millimeter wave Applications

Download or read book Design and Optimization of Dielectric Resonator Antenna Arrays Based on Substrate Integrated Waveguide Technology for Millimeter wave Applications written by Mona Sabry Abdalla Abousheishaa and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the lower frequency bands heavily crowded, the millimeter wave (MMW) frequency band has attracted a lot of attention, offering a wide range of applications. It also introduces new challenges to the research community. Antennas and MMW circuits with compact size, low cost, high efficiency, and low loss are much needed to meet the new requirements of these applications. This research focuses on the design and optimization of dielectric resonator antenna (DRA) arrays based on substrate integrated waveguide (SIW) technology, which has been proven to be promising for MMW applications. The objectives include both the development of highly efficient computer aided design and optimization techniques, and the development of new designs based on the SIW-DRA technology. Toward these objectives, an efficient and accurate circuit model is developed first. A previously reported structure of DRA array is investigated based on two different slot orientations. The total mutual coupling between antennas is firstly extracted and modeled as a two port S-parameters. Two different methods are used to extract the total mutual coupling due to the difference of the slot configurations. Next, a new and fully adjustable model for the mutual coupling is developed for DRA array, resulting in a flexible circuit model allowing the design parameters to be varied. A comparison with full wave simulation and measurement results proves that the circuit model can be used as an efficient design and optimization tool. The model is further verified through a new design of SIW-series fed DRA parasitic array, in which an additional parasitic DRA is added on both sides of each active element to improve the gain. The antennas are fed using longitudinal slots on SIW. Due to the configuration of the antenna elements, there is strong mutual coupling between the antenna elements. The good agreement between the electromagnetic (EM) simulated and circuit model results for this design further proves the efficiency of the model.Next, a new design of an eight-element SIW middle fed series rectangular DRA array with 45° linear polarization is developed. The implicit space mapping (ISM) technique is applied for the optimization of the complex structure. The new circuit model plays an important role in the optimization method serving as the coarse/surrogate mode, and a full wave solver is used as the fine model. Parameters in the surrogate model are divided into pre-assigned parameters and design parameters. In each iteration, the preassigned parameters are extracted so that the fine model and surrogate model outputs match. The design parameters are then re-optimized and fed to the fine model. As demonstrated with this DRA array design, the optimization approach combining the developed circuit model with ISM technique is highly efficient. Only three iterations are needed to reach an optimized solution for such a complex structure. The optimized design has been fabricated using a low cost Printed Circuit Board (PCB)-based technology for validation of both performance of the design and modeling techniques. The comparison between the simulated and the measured results shows very good agreement.

Book Dielectric Resonator Antennas

Download or read book Dielectric Resonator Antennas written by Zhijiao Chen and published by John Wiley & Sons. This book was released on 2023-12-19 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dielectric Resonator Antennas A detailed guide to dielectric-based techniques for antenna array design and construction Dielectric designs, which transmit electricity without conducting it, have in recent decades been increasingly incorporated into antenna arrays. The resulting Dielectric Resonator Antennas (DRAs) provide significant benefits over metal antennas, avoiding conduction loss and increasing efficiency. Dielectric elements can also be incorporated into metal antennas to improve performance. Dielectric Resonator Antennas provides an introduction to dielectric-based techniques for manufacturing antenna arrays. It supplies guidelines for identifying dielectric antenna designs (as opposed to metal ones), describes recent developments in dielectric antenna technology, and points toward potential areas of future growth and development. Readers will also find: Cutting-edge DRA applications in microwave and millimeter-wave communications Detailed discussion of array types including wideband, high-gain, high efficiency, and more Instructions for fabricating dielectric antenna arrays and assessing tolerance levels Dielectric Resonator Antennas is ideal for researchers and students in electrical engineering, as well as for engineers and others working in wireless communications.

Book Substrate Integrated Millimeter Wave Antennas for Next Generation Communication and Radar Systems

Download or read book Substrate Integrated Millimeter Wave Antennas for Next Generation Communication and Radar Systems written by Zhi Ning Chen and published by John Wiley & Sons. This book was released on 2021-04-29 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens's surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.

Book Substrate Integrated Antennas and Arrays

Download or read book Substrate Integrated Antennas and Arrays written by Yu Jian Cheng and published by CRC Press. This book was released on 2018-09-03 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author’s extensive research, this comprehensive book: Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologies Examines theoretical and experimental results connected to electrical and mechanical performance Explains how to overcome difficulties in meeting bandwidth, gain, and efficiency specifications Substrate Integrated Antennas and Arrays offers valuable insight into the state of the art of SIC and SIW antenna technologies, presenting research useful to the development of wireless communication base station antennas, portable microwave point-to-point systems, collision avoidance radars, conformal antennas, and satellite antennas.

Book Intelligent Communication and Automation Systems

Download or read book Intelligent Communication and Automation Systems written by Kamal Sharma and published by CRC Press. This book was released on 2021-04-19 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive reference text discusses concepts of intelligence communication and automation system in a single volume. The text discusses the role of artificial intelligence in communication engineering, the role of machine learning in communication systems, and applications of image and video processing in communication. It covers important topics including smart sensing systems, intelligent hardware design, low power system design using AI techniques, intelligent signal processing for biomedical applications, intelligent robotic systems, and network security applications. The text will be useful for senior undergraduate and graduate students in different areas including electrical engineering, and electronics and communications engineering.

Book Highly Efficient Planar Antenna System Based on the Planar Waveguide Technology for Low Cost Millimeter wave Applications

Download or read book Highly Efficient Planar Antenna System Based on the Planar Waveguide Technology for Low Cost Millimeter wave Applications written by Wael Mahmoud Abdel Wahab and published by . This book was released on 2011 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the integration of planar antennas, such as Dielectric Resonator Antennas (DRAs) to the planar waveguide structure, specifically the Substrate Integrated Waveguide (SIW) for high radiation efficiency millimeter-wave (mm-wave) applications. The SIW is a low cost and low loss technology, since it almost keeps the guided wave inside the structure. Therefore, it is an excellent candidate feeding scheme compared to traditional planar (multi-conductor) structures, such as the Microstrip Line (MSL) and Co-planar Waveguide (CPW) for many planar antennas. It enhances the antenna's overall radiation efficiency by minimizing the conduction loss, which dominates at the mm-wave frequency band. For this thesis, two different SIW-integrated DRA configurations operating at mm-wave frequency band are presented. The rectangular DRA is excited in its fundamental mode TE[delta]11 for radiation through a narrow slot cut on the SIW broad wall. However, the coupling slot itself is excited by the SIW TE10 fundamental mode. In addition, the design guidelines, and a parametric study is also conducted on the proposed antenna parameters to investigate their impact on the antenna's overall performance including the reflection coefficient and radiation pattern (gain). The results are provided within this thesis. The antenna is made of low cost and low loss materials that are available commercially. It is fabricated by using a novel and simple technique, which is compatible with the Printed Circuit Board (PCB) technology. The board is treated as multi-layers composed of the SIW-layer, and DRA element(s) layer, respectively. The fabricated antenna prototypes are tested to demonstrate their validity for real microwave/mm-wave applications. Their reflection coefficients and radiation patterns are measured, and the antenna shows a boresight gain of 5.51 dB and a radiation efficiency of more than 90 % over the operating frequency band of 33-40 GHz. Antenna arrays based on the SIW integrated DRA are investigated for high gain/radiation efficiency applications. Different array configurations such as, linear (series-fed and corporate-fed) and two-dimensional (2D) arrays are presented. The series-fed DRA array is characterized by a single SIW line loaded by DRA-slot pairs, whereas the SIW-power splitter is used to form the corporate-fed DRA array, when loaded by DRA-slot pairs. While the SIW hybrid-feeding scheme (series-feed combined with corporate-feed) is used to form 2D DRA arrays. In this design, the SIW-power splitter is used to split the power equally and in-phase among the sets (rows) of SIW series fed-DRA elements (columns). A simple and generic Transmission Line (T.L.) circuit model is proposed to simplify and expedite the antenna array design process. It is used to calculate the antenna reflection coefficient and radiation pattern (gain). The T.L. model does not take the mutual coupling between the DRA elements into account, since our study shows that its less than -20 dB over the operating bandwidth. However, it is useful and faster than full-wave solvers, such as HFSS, which consumes time and memory due to the huge generated mesh. The developed T.L. circuit model is used to design the antenna array and study the impact of its main designed parameters on the antenna performance. The developed antenna array T.L. model leads to a general design methodology (guidelines). It also allows for optimum array designs for a given set of performance requirements and to have more physical insight into the SIW technology based antenna systems for mm-wave bands. The designed antenna array samples are fabricated and tested within the operating frequency band 33-40 GHz. The series-fed antenna array shows a measured boresight gain of 11.70 dB, and high radiation efficiency, which is more than 90 % over an operating frequency band of 4%. Furthermore, the measured results are compared to these calculated by the proposed T.L. circuit model and full-wave solver. A good agreement between the measured and the HFSS results are observed, especially near the frequency at which the reflection coefficient is minimum. However, some deviation is noticed between the proposed circuit model and the measured results. This deviation is attributed to the discrete nature of the SIW structure that affects the Short Circuit (SC) performance (magnitude and phase), the T.L. lengths, and the mutual coupling between any two adjacent antenna elements. All these issues are handled efficiently and are taken into account by the full-wave solver. Therefore, the measured reflection coefficient agrees with that of the HFSS, except for a very small deviation, caused by the fabrication tolerances and measurement errors. However, the proposed T.L. circuit model is still valid and can easily predict and estimate the resonance behavior and the impedance bandwidth of the proposed antenna arrays in a very short time compared with the full-wave solver.

Book Analysis and Design of Substrate Integrated Waveguide based Antennas for Millimeter Wave Applications

Download or read book Analysis and Design of Substrate Integrated Waveguide based Antennas for Millimeter Wave Applications written by Shraman Gupta and published by . This book was released on 2016 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, there has been increasing interest and rapid growth in millimeter wave (MMW) antennas and devices for use in diverse applications, services and technologies such as short-range communication, future mm-wave mobile communication for the fifth generation (5G) cellular networks, and sensor and imaging systems. Due to the corresponding smaller wavelength, mm-wave frequencies offer the advantage of physically smaller antennas and circuits as well as the availability of much wider bandwidth compared to microwave frequencies. It is important to design millimeter wave antennas with high gain characteristics due to their high sensitivity towards atmospheric absorption losses. Moreover, millimeter wave antennas can have wide bandwidth and are suitable for applications in large frequency range. In this thesis, planar antennas are designed using substrate integrated waveguide (SIW) technology to have low losses, high quality factor, and low fabrication cost. Firstly, an antipodal fermi linear tapered slot antenna (AFLSTA) with sine corrugations at the side edges at 32.5 GHz is presented, which has a wide impedance bandwidth greater than 30 %, in order to support the high data rate channels. This antenna has a high gain of 12.6 dB and low side lobe levels (better than - 17 dB) in both E and H planes. This antenna is studied and analyzed in array and beamforming configurations to meet requirements of millimeter wave applications. In order to obtain high gain and narrow beamwidth pattern, a 1 × 8 AFLTSA array using SIW power divider network is presented. The design characteristics of the power divider network are presented in this thesis, which help in calculating the performance characteristics of this array structure. This array has an acceptable bandwidth of 14.7 % (30-35 GHz) with high gain of 20.4 dB and 8.35° 3 dB beamwidth. The side lobe levels are also improved using this SIW power divider network and are lower than -25 dB in E-plane and -15 dB in H-plane respectively. This antenna has a radiation efficiency greater than 93% over the whole bandwidth. The second research theme is beamforming of AFLTSA antenna. This beamforming is performed using multi-beam antenna concept in which the beam is rotated with a help of compact beamforming network and excitation from different input ports. The design methodology for 2 × 2 and 4 × 4 subarray beamforming networks is presented along with their current distributions illustrating the beamforming process. These subarrays possess wide impedance bandwidth between 29-36 GHz. Moreover, these subarrays are able to achieve gain between 12-15 dB with narrow beamwidth reaching till 11°. All the results along with the numerical data is presented in this thesis. This antenna is suitable candidate for millimeter wave wireless communications and imaging systems.

Book Substrate Integrated Suspended Line Antenna and Arrays

Download or read book Substrate Integrated Suspended Line Antenna and Arrays written by Kaixue Ma and published by Springer Nature. This book was released on 2023-12-23 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves deeply into the substrate integrated suspended line antenna technologies and evaluates its potential to replace conventional three-dimensional (3D) metal-based antennas. Over the years, studies on substrate integrated suspended line antennas have captivated engineers and scientists from the antennas and related engineering fields, all aiming to achieve low-cost and low-loss characteristics. The book establishes a fundamental framework for this topic, while emphasizing the importance of substrate integrated suspended line antennas in the wireless communication and radar systems. It is designed for undergraduate and graduate students who are interested in antenna technology, researchers investigating substrate integrated technology, and antenna engineers working on low-cost and low-loss antennas and arrays.

Book Millimeter Wave Antennas  Configurations and Applications

Download or read book Millimeter Wave Antennas Configurations and Applications written by Jaco du Preez and published by Springer. This book was released on 2016-06-20 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This book offers readers essential guidance, helping them to gain a thorough understanding based on the most recent research findings and serving as a sound basis for informed decision-making.

Book Fast Methods for Millimeter wave Dielectric Resonator and Antenna Analysis and Design

Download or read book Fast Methods for Millimeter wave Dielectric Resonator and Antenna Analysis and Design written by Huanyu Chen and published by . This book was released on 2009 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ever-increasing interest in millimeter-wave and terahertz spectrum has prompted research and development of novel passive components working at these frequencies. Compared with the conventional planar components, non-planar dielectric devices become more attractive as frequencies increase due to their higher quality factors and dimensional tolerances. In this thesis, we present fast methods to analyze the millimeter-wave dielectric resonator and rod antenna.

Book Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range

Download or read book Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range written by Islam Islamov and published by Springer Nature. This book was released on with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nano Dielectric Resonator Antennas for 5G Applications

Download or read book Nano Dielectric Resonator Antennas for 5G Applications written by Rajveer S. Yaduvanshi and published by CRC Press. This book was released on 2020-05-26 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are always surrounded by electromagnetic waves and fields of various spectra. This book explains basic electromagnetic theory with the help of design formulations i.e. mathematical background on antennas along with experimentations, which has made this book unique. The main purpose of this book is to embed mathematical EM theory of dielectric resonator antennas with experimental validation so that understanding of concepts takes place. Initially, basic understanding of philosophy of dielectric resonators has been discussed, then it is supported with mathematical modeling and later same is implemented with its prototype model along with experimentations. The modes theory gives important analysis on currents distribution, impedance analysis and radiation pattern in DRA. Circular polarization can built signal robustness, case studies on circular polarization has been included. Equivalent RLC circuit concept has been introduced. Challenges of switching from microwave to terahertz has been briefly discussed. Nano DRA will revolutionize the wireless technology. Nano DRA ,Terahertz DRA and Quantum DRA have analyzed and studied.

Book Analysis and Design of Transmitarray Antennas

Download or read book Analysis and Design of Transmitarray Antennas written by Ahmed H. Abdelrahman and published by Morgan & Claypool Publishers. This book was released on 2017-01-18 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, transmitarray antennas have attracted growing interest with many antenna researchers. Transmitarrays combines both optical and antenna array theory, leading to a low profile design with high gain, high radiation efficiency, and versatile radiation performance for many wireless communication systems. In this book, comprehensive analysis, new methodologies, and novel designs of transmitarray antennas are presented. Detailed analysis for the design of planar space-fed array antennas is presented. The basics of aperture field distribution and the analysis of the array elements are described. The radiation performances (directivity and gain) are discussed using array theory approach, and the impacts of element phase errors are demonstrated. The performance of transmitarray design using multilayer frequency selective surfaces (M-FSS) approach is carefully studied, and the transmission phase limit which are generally independent from the selection of a specific element shape is revealed. The maximum transmission phase range is determined based on the number of layers, substrate permittivity, and the separations between layers. In order to reduce the transmitarray design complexity and cost, three different methods have been investigated. As a result, one design is performed using quad-layer cross-slot elements with no dielectric material and another using triple-layer spiral dipole elements. Both designs were fabricated and tested at X-Band for deep space communications. Furthermore, the radiation pattern characteristics were studied under different feed polarization conditions and oblique angles of incident field from the feed. New design methodologies are proposed to improve the bandwidth of transmitarray antennas through the control of the transmission phase range of the elements. These design techniques are validated through the fabrication and testing of two quad-layer transmitarray antennas at Ku-band. A single-feed quad-beam transmitarray antenna with 50 degrees elevation separation between the beams is investigated, designed, fabricated, and tested at Ku-band. In summary, various challenges in the analysis and design of transmitarray antennas are addressed in this book. New methodologies to improve the bandwidth of transmitarray antennas have been demonstrated. Several prototypes have been fabricated and tested, demonstrating the desirable features and potential new applications of transmitarray antennas.

Book Substrate Integrated Antennas and Arrays

Download or read book Substrate Integrated Antennas and Arrays written by Yu Cheng and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book: Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologies Examines theoretical and experimental results connected to electrical and mechanical performance Explains how to overcome difficulties in meeting bandwidth, gain, and efficiency specifications Substrate Integrated Antennas and Arrays offers valuable insight into the state of the art of SIC and SIW antenna technologies, presenting research useful to the development of wireless communication base station antennas, portable microwave point-to-point systems, collision avoidance radars, conformal antennas, and satellite antennas.

Book Integrated Antennas and Active Beamformers Technology for Mm wave Phased array Systems

Download or read book Integrated Antennas and Active Beamformers Technology for Mm wave Phased array Systems written by Behzad Biglarbegian and published by . This book was released on 2012 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, based on the indoor channel measurements and ray-tracing modeling for the indoor mm-wave wireless communications, the challenges of the design of the radio in this band is studied. Considering the recently developed standards such as IEEE 802.15.3c, ECMA and WiGig at 60 GHz, the link budget of the system design for different classes of operation is done and the requirement for the antenna and other RF sections are extracted. Based on radiation characteristics of mm-wave and the fundamental limits of low-cost Silicon technology, it is shown that phased-array is the ultimate solution for the radio and physical layer of the mobile millimeter wave multi-Gb/s wireless networks. Different phased-array configurations are studied and a low-cost single-receiver array architecture with RF phase-shifting is proposed. A systematic approach to the analysis of the overall noise-figure of the proposed architecture is presented and the component technical requirements are derived for the system level specifications. The proposed on-chip antennas and antenna-in-packages for various applications are designed and verified by the measurement results. The design of patch antennas on the low-cost RT/Duroid substrate and the slot antennas on the IPD technologies as well as the compact on-chip slot DRA antenna are explained in the antenna design section. The design of reflective-type phase shifters in CMOS and MEMS technologies is explained. Finally, the design details of two developed 60 GHz integrated phased-arrays in CMOS technology are discussed. Front-end circuit blocks such as LNA, continuous passive reflective-type phase shifters, power combiner and variable gain amplifiers are investigated, designed and developed for a 60 GHz phased-array radio in CMOS technology. In the first design, the two-element CMOS phased-array front-ends based on passive phase shifting architecture is proposed and developed. In the second phased-array, the recently developed on-chip dielectric resonator antenna in our group in lower frequency is scaled and integrated with the front-end.