Download or read book Degree Theory for Discontinuous Operators written by Rubén Figueroa Sestelo and published by Springer Nature. This book was released on 2021-09-21 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book contains a generalization of the Leray-Schauder degree theory which applies for wide and meaningful types of discontinuous operators. The discontinuous degree theory introduced in the first section is subsequently used to prove new, applicable, discontinuous versions of many classical fixed-point theorems such as Schauder’s. Finally, readers will find in this book several applications of those discontinuous fixed-point theorems in the proofs of new existence results for discontinuous differential problems. Written in a clear, expository style, with the inclusion of many examples in each chapter, this book aims to be useful not only as a self-contained reference for mature researchers in nonlinear analysis but also for graduate students looking for a quick accessible introduction to degree theory techniques for discontinuous differential equations.
Download or read book Degree Theory for Discontinuous Operators written by Rubén Figueroa Sestelo and published by Springer. This book was released on 2022-09-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book contains a generalization of the Leray-Schauder degree theory which applies for wide and meaningful types of discontinuous operators. The discontinuous degree theory introduced in the first section is subsequently used to prove new, applicable, discontinuous versions of many classical fixed-point theorems such as Schauder’s. Finally, readers will find in this book several applications of those discontinuous fixed-point theorems in the proofs of new existence results for discontinuous differential problems. Written in a clear, expository style, with the inclusion of many examples in each chapter, this book aims to be useful not only as a self-contained reference for mature researchers in nonlinear analysis but also for graduate students looking for a quick accessible introduction to degree theory techniques for discontinuous differential equations.
Download or read book Issues in Calculus Mathematical Analysis and Nonlinear Research 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 743 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Calculus, Mathematical Analysis, and Nonlinear Research. The editors have built Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Calculus, Mathematical Analysis, and Nonlinear Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Calculus, Mathematical Analysis, and Nonlinear Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Download or read book Operator Theory and Arithmetic in H infinity written by Hari Bercovici and published by American Mathematical Soc.. This book was released on 1988 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Jordan's classification theorem for linear transformations on a finite-dimensional vector space is a natural highlight of the deep relationship between linear algebra and the arithmetical properties of polynomial rings. Because the methods and results of finite-dimensional linear algebra seldom extend to or have analogs in infinite-dimensional operator theory, it is therefore remarkable to have a class of operators which has a classification theorem analogous to Jordan's classical result and has properties closely related to the arithmetic of the ring $H^{\infty}$ of bounded analytic functions in the unit disk. $C_0$ is such a class and is the central object of study in this book.A contraction operator belongs to $C_0$ if and only if the associated functional calculus on $H^{\infty}$ has a nontrivial kernel. $C_0$ was discovered by Bela Sz.-Nagy and Ciprian Foias in their work on canonical models for contraction operators on Hilbert space. Besides their intrinsic interest and direct applications, operators of class $C_0$ are very helpful in constructing examples and counterexamples in other branches of operator theory. In addition, $C_0$ arises in certain problems of control and realization theory.In this survey work, the author provides a unified and concise presentation of a subject that was covered in many articles. The book describes the classification theory of $C_0$ and relates this class to other subjects such as general dilation theory, stochastic realization, representations of convolution algebras, and Fredholm theory. This book should be of interest to operator theorists as well as theoretical engineers interested in the applications of operator theory. In an effort to make the book as self-contained as possible, the author gives an introduction to the theory of dilations and functional models for contraction operators. Prerequisites for this book are a course in functional analysis and an acquaintance with the theory of Hardy spaces in the unit disk. In addition, knowledge of the trace class of operators is necessary in the chapter on weak contractions.
Download or read book Geometrical Methods of Nonlinear Analysis written by Mark Aleksandrovich Krasnoselʹskiĭ and published by Springer. This book was released on 1984 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometrical (in particular, topological) methods in nonlinear analysis were originally invented by Banach, Birkhoff, Kellogg, Schauder, Leray, and others in existence proofs. Since about the fifties, these methods turned out to be essentially the sole approach to a variety of new problems: the investigation of iteration processes and other procedures in numerical analysis, in bifur cation problems and branching of solutions, estimates on the number of solutions and criteria for the existence of nonzero solutions, the analysis of the structure of the solution set, etc. These methods have been widely applied to the theory of forced vibrations and auto-oscillations, to various problems in the theory of elasticity and fluid. mechanics, to control theory, theoretical physics, and various parts of mathematics. At present, nonlinear analysis along with its geometrical, topological, analytical, variational, and other methods is developing tremendously thanks to research work in many countries. Totally new ideas have been advanced, difficult problems have been solved, and new applications have been indicated. To enumerate the publications of the last few years one would need dozens of pages. On the other hand, many problems of non linear analysis are still far from a solution (problems arising from the internal development of mathematics and, in particular, problems arising in the process of interpreting new problems in the natural sciences). We hope that the English edition of our book will contribute to the further propagation of the ideas of nonlinear analysis.
Download or read book Multivalued Maps And Differential Inclusions Elements Of Theory And Applications written by Valeri Obukhovskii and published by World Scientific. This book was released on 2020-04-04 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields.This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics.The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies.
Download or read book Theory and Applications of Nonlinear Operators of Accretive and Monotone Type written by Athanass Kartsatos and published by CRC Press. This book was released on 1996-03-14 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is based upon a Special Session on the Theory and Applications of Nonlinear Operators of Accretive and Monotone Type held during the recent meeting of the American Mathematical Society in San Francisco. It examines current developments in non-linear analysis, emphasizing accretive and monotone operator theory. The book presents a major survey/research article on partial functional differential equations with delay and an important survey/research article on approximation solvability.
Download or read book From The Planck Length To The Hubble Radius Sep 98 Italy written by Antonino Zichichi and published by World Scientific. This book was released on 2000-05-24 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: From August to September 1998, a group of 75 physicists from 52 laboratories in 15 countries met in Erice, Italy, for the 36th Course of the International School of Subnuclear Physics. This book constitutes the proceedings of that meeting. It reviews the present status of subnuclear physics and its connections with the fundamental problems of physics, such as the unification of all gauge forces.
Download or read book Nonlinear Operator Theory in Abstract Spaces and Applications written by Yu Qing Chen and published by Nova Publishers. This book was released on 2004 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily deals with non-linear operator theory in topological vector spaces and applications. Recently, non-linear functional analysis has become a main field of mathematics, which has played an important role in physics, mechanics and engineering, operations research and economics and many others for the past few decades. The book presents a survey of some main ideas, concepts, methods and applications in non-linear functional analysis.
Download or read book Approximation solvability of Nonlinear Functional and Differential Equations written by Wolodymyr V. Petryshyn and published by CRC Press. This book was released on 2017-11-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference/text develops a constructive theory of solvability on linear and nonlinear abstract and differential equations - involving A-proper operator equations in separable Banach spaces, and treats the problem of existence of a solution for equations involving pseudo-A-proper and weakly-A-proper mappings, and illustrates their applications.;Facilitating the understanding of the solvability of equations in infinite dimensional Banach space through finite dimensional appoximations, this book: offers an elementary introductions to the general theory of A-proper and pseudo-A-proper maps; develops the linear theory of A-proper maps; furnishes the best possible results for linear equations; establishes the existence of fixed points and eigenvalues for P-gamma-compact maps, including classical results; provides surjectivity theorems for pseudo-A-proper and weakly-A-proper mappings that unify and extend earlier results on monotone and accretive mappings; shows how Friedrichs' linear extension theory can be generalized to the extensions of densely defined nonlinear operators in a Hilbert space; presents the generalized topological degree theory for A-proper mappings; and applies abstract results to boundary value problems and to bifurcation and asymptotic bifurcation problems.;There are also over 900 display equations, and an appendix that contains basic theorems from real function theory and measure/integration theory.
Download or read book Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations written by V. Lakshmikantham and published by Routledge. This book was released on 2017-09-29 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""Providing the theoretical framework to model phenomena with discontinuous changes, this unique reference presents a generalized monotone iterative method in terms of upper and lower solutions appropriate for the study of discontinuous nonlinear differential equations and applies this method to derive suitable fixed point theorems in ordered abstract spaces.
Download or read book Jacobi Operators and Completely Integrable Nonlinear Lattices written by Gerald Teschl and published by American Mathematical Soc.. This book was released on 2000 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.
Download or read book Nonlinear Spectral Theory written by Jürgen Appell and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: In view of the eminent importance of spectral theory of linear operators in many fields of mathematics and physics, it is not surprising that various attempts have been made to define and study spectra also for nonlinear operators. This book provides a comprehensive and self-contained treatment of the theory, methods, and applications of nonlinear spectral theory. The first chapter briefly recalls the definition and properties of the spectrum and several subspectra for bounded linear operators. Then some numerical characteristics for nonlinear operators are introduced which are useful for describing those classes of operators for which there exists a spectral theory. Since spectral values are closely related to solvability results for operator equations, various conditions for the local or global invertibility of a nonlinear operator are collected in the third chapter. The following two chapters are concerned with spectra for certain classes of continuous, Lipschitz continuous, or differentiable operators. These spectra, however, simply adapt the corresponding definitions from the linear theory which somehow restricts their applicability. Other spectra which are defined in a completely different way, but seem to have useful applications, are defined and studied in the following four chapters. The remaining three chapters are more application-oriented and deal with nonlinear eigenvalue problems, numerical ranges, and selected applications to nonlinear problems. The only prerequisite for understanding this book is a modest background in functional analysis and operator theory. It is addressed to non-specialists who want to get an idea of the development of spectral theory for nonlinear operators in the last 30 years, as well as a glimpse of the diversity of the directions in which current research is moving.
Download or read book Numerical Modeling of Coupled Phenomena in Science and Engineering written by Mario César Suárez Arriaga and published by CRC Press. This book was released on 2008-12-01 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is a universal language. Differential equations, mathematical modeling, numerical methods and computation form the underlying infrastructure of engineering and the sciences. In this context mathematical modeling is a very powerful tool for studying engineering problems, natural systems and human society. This interdisciplinary book cont
Download or read book On Positive Solutions of Nonlinear Elliptic Eigenvalue Problems written by Hendrik J. Kuiper and published by . This book was released on 1971 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Equations with Involutive Operators written by Nikolai Karapetiants and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
Download or read book Groups Acting on Hyperbolic Space written by Juergen Elstrodt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,