Download or read book Using SQLite written by Jay Kreibich and published by "O'Reilly Media, Inc.". This book was released on 2010-08-17 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains how to build database-backed applications for the Web, desktop, embedded systems, and operating systems using SQLite.
Download or read book Python Data Analytics written by Fabio Nelli and published by Apress. This book was released on 2018-09-27 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You'll LearnUnderstand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis
Download or read book Hands On Image Processing with Python written by Sandipan Dey and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the mathematical computations and algorithms for image processing using popular Python tools and frameworks. Key FeaturesPractical coverage of every image processing task with popular Python librariesIncludes topics such as pseudo-coloring, noise smoothing, computing image descriptorsCovers popular machine learning and deep learning techniques for complex image processing tasksBook Description Image processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python. The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end deep learning model called YOLO for object detection. We will also cover a few advanced problems, such as image inpainting, gradient blending, variational denoising, seam carving, quilting, and morphing. By the end of this book, we will have learned to implement various algorithms for efficient image processing. What you will learnPerform basic data pre-processing tasks such as image denoising and spatial filtering in PythonImplement Fast Fourier Transform (FFT) and Frequency domain filters (e.g., Weiner) in PythonDo morphological image processing and segment images with different algorithmsLearn techniques to extract features from images and match imagesWrite Python code to implement supervised / unsupervised machine learning algorithms for image processingUse deep learning models for image classification, segmentation, object detection and style transferWho this book is for This book is for Computer Vision Engineers, and machine learning developers who are good with Python programming and want to explore details and complexities of image processing. No prior knowledge of the image processing techniques is expected.
Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Download or read book Python GUI For Signal and Image Processing written by Vivian Siahaan and published by SPARTA PUBLISHING. This book was released on 2019-10-05 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: You will learn to create GUI applications using the Qt toolkit. The Qt toolkit, also popularly known as Qt, is a cross-platform application and UI framework developed by Trolltech, which is used to develop GUI applications. You will develop an existing GUI by adding several Line Edit widgets to read input, which are used to set the range and step of the graph (signal). Next, Now, you can use a widget for each graph. Add another Widget from Containers in gui_graphics.ui using Qt Designer. Then, Now, you can use two Widgets, each of which has two canvases. The two canvases has QVBoxLayout in each Widget. Finally, you will apply those Widgets to display the results of signal and image processing techniques.
Download or read book START FROM SCRATCH DIGITAL IMAGE PROCESSING WITH TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-10-21 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Start from Scratch: Digital Image Processing with Tkinter" is a beginner-friendly guide that delves into the basics of digital image processing using Python and Tkinter, a popular GUI library. The project is divided into distinct modules, each focusing on a specific aspect of image manipulation. The journey begins with an exploration of Image Color Space. Here, readers encounter the Main Form, which serves as the entry point to the application. It provides a user-friendly interface for loading images, selecting color spaces, and visualizing various color channels. The Fundamental Utilities play a crucial role by providing core functionalities like loading images, converting color spaces, and manipulating pixel data. The project also includes forms dedicated to displaying individual color channels and offering insights into the current color space through histograms. The Plotting Utilities module facilitates the creation of visual representations such as plots and graphs, enhancing the user's understanding of color spaces. Moving on, the Image Transformation section introduces readers to techniques like the Fast Fourier Transform (FFT). The Fast Fourier Transform Utilities module enables the implementation of FFT algorithms for converting images from spatial to frequency domains. A corresponding form allows users to view images in the frequency domain, with additional adjustments made to the plotting utilities for effective visualization. In the context of Discrete Cosine Transform (DCT), readers gain insights into algorithms and functions for transforming images. The Form for Discrete Cosine Transform aids in visualizing images in the DCT domain, while the plotting utilities are modified to accommodate these transformed images. The Discrete Sine Transform (DST) section introduces readers to DST algorithms and their role in image transformation. A dedicated form for visualizing images in the DST domain is provided, and the plotting utilities are further extended to handle these transformations effectively. Moving Average Smoothing is another critical aspect covered in the project. The Filter2D Utilities facilitate the application of moving average smoothing techniques. Additionally, metrics utilities enable the assessment of the smoothing process, with forms available for displaying both metrics and the smoothed images. Next, the project addresses Exponential Moving Average techniques, modifying the existing utilities to accommodate this specific approach. Similarly, forms for visualizing results and metrics are provided. Readers are then introduced to techniques like Median Filtering, Savitzky-Golay Filtering, and Wiener Filtering. The Filter2D Utilities are adapted to facilitate these filtering methods, and metrics utilities are employed to assess the effectiveness of each technique. Forms dedicated to each filtering method provide a platform for visualizing the results. The final section of the project explores techniques such as Total Variation Denoising, Non-Local Means Denoising, and PCA Denoising. The Filter2D Utilities are once again modified to support these denoising techniques. Metrics utilities are employed to evaluate the denoising process, and dedicated forms offer visualization capabilities. By breaking down the project into these modules, readers can systematically grasp the fundamentals of digital image processing, gradually building their skills from one concept to the next. Each section provides hands-on experience and practical knowledge, making it an ideal starting point for beginners in image processing.
Download or read book LEARN FROM SCRATCH SIGNAL AND IMAGE PROCESSING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
Download or read book DATA ANALYSIS PROJECTS WITH MYSQL SQLITE POSTGRESQL AND SQL SERVER USING PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-10-26 with total page 1647 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: FULL SOURCE CODE: POSTGRESQL AND DATA SCIENCE FOR PROGRAMMERS WITH PYTHON GUI This project uses the PostgreSQL version of MySQL-based Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the database from https://dev.mysql.com/doc/sakila/en/. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 2: FULL SOURCE CODE: MYSQL FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a MySQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books. PROJECT 4: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.
Download or read book Introduction to Image Processing and Analysis written by John C. Russ and published by CRC Press. This book was released on 2017-12-19 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image processing comprises a broad variety of methods that operate on images to produce another image. A unique textbook, Introduction to Image Processing and Analysis establishes the programming involved in image processing and analysis by utilizing skills in C compiler and both Windows and MacOS programming environments. The provided mathematical background illustrates the workings of algorithms and emphasizes the practical reasons for using certain methods, their effects on images, and their appropriate applications. The text concentrates on image processing and measurement and details the implementation of many of the most widely used and most important image processing and analysis algorithms. Homework problems are included in every chapter with solutions available for download from the CRC Press website The chapters work together to combine image processing with image analysis. The book begins with an explanation of familiar pixel array and goes on to describe the use of frequency space. Chapters 1 and 2 deal with the algorithms used in processing steps that are usually accomplished by a combination of measurement and processing operations, as described in chapters 3 and 4. The authors present each concept using a mixture of three mutually supportive tools: a description of the procedure with example images, the relevant mathematical equations behind each concept, and the simple source code (in C), which illustrates basic operations. In particularly, the source code provides a starting point to develop further modifications. Written by John Russ, author of esteemed Image Processing Handbook now in its fifth edition, this book demonstrates functions to improve an image's of features and detail visibility, improve images for printing or transmission, and facilitate subsequent analysis.
Download or read book Programming Computer Vision with Python written by Jan Erik Solem and published by "O'Reilly Media, Inc.". This book was released on 2012-06-19 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface
Download or read book DIGITAL VIDEO PROCESSING PROJECTS USING PYTHON AND TKINTER written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2024-03-23 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first project is a video player application with an additional feature to compute and display the MD5 hash of each frame in a video. The user interface is built using Tkinter, a Python GUI toolkit, providing buttons for opening a video file, playing, pausing, and stopping the video playback. Upon opening a video file, the application displays metadata such as filename, duration, resolution, FPS, and codec information in a table. The video can be navigated using a slider to seek to a specific time point. When the video is played, the application iterates through each frame, extracts it from the video clip, calculates its MD5 hash, and displays the frame along with its histogram and MD5 hash. The histogram represents the pixel intensity distribution of each color channel (red, green, blue) in the frame. The computed MD5 hash for each frame is displayed in a label below the video frame. Additionally, the frame hash along with its index is saved to a text file for further analysis or verification purposes. The class encapsulates the functionality of the application, providing methods for opening a video file, playing and controlling video playback, updating metadata, computing frame histogram, plotting histogram, calculating MD5 hash for each frame, and saving frame hashes to a file. The main function initializes the Tkinter root window, instantiates the class, and starts the Tkinter event loop to handle user interactions and update the GUI accordingly. The second project is a video player application with additional features for frame extraction and visualization of RGB histograms for each frame. Developed using Tkinter, a Python GUI toolkit, the application provides functionalities such as opening a video file, playing, pausing, and stopping video playback. The user interface includes buttons for controlling video playback, a combobox for selecting zoom scale, an entry for specifying a time point to jump to, and buttons for frame extraction and opening another instance of the application. Upon opening a video file, the application loads it using the imageio library and displays the frames in a canvas. Users can play, pause, and stop the video using dedicated buttons. The zoom scale can be adjusted, and the video can be navigated using scrollbar or time entry. Additionally, users can extract a specific frame by entering its frame number, which opens a new window displaying the extracted frame along with its RGB histograms and MD5 hash value. The class encapsulates the application's functionalities, including methods for opening a video file, playing/pausing/stopping video, updating zoom scale, displaying frames, handling mouse events for dragging and scrolling, jumping to a specified time, and extracting frames. The main function initializes the Tkinter root window and starts the application's event loop to handle user interactions and update the GUI accordingly. Users can also open multiple instances of the application simultaneously to work with different video files concurrently. The third project is a GUI application built with Tkinter for calculating hash values of video frames and displaying them in a listbox. The interface consists of different frames for video display and hash values, along with buttons for controlling video playback, calculating hashes, saving hash values to a file, and opening a new instance of the application. Users can open a video file using the "Open Video" button, after which they can play, pause, or stop the video using corresponding buttons. Upon opening a video file, the application reads frames from the video capture and displays them in the designated frame. Users can interact with the video using playback buttons to control the video's flow. Hash values for each frame are calculated using various hashing algorithms such as MD5, SHA-1, SHA-256, and others. These hash values are then displayed in the listbox, allowing users to view the hash values corresponding to each algorithm. Additionally, users can save the calculated hash values to a text file by clicking the "Save Hashes" button, providing a convenient way to store and analyze the hash data. Lastly, users can open multiple instances of the application simultaneously by clicking the "Open New Instance" button, facilitating concurrent processing of different video files. The fourth project is a GUI application developed using Tkinter for analyzing video frames through frame hashing and histogram visualization. The interface presents a canvas for displaying the video frames along with control buttons for video playback, frame extraction, and zoom control. Users can open a video file using the "Open Video" button, and the application provides functionality to play, pause, and stop the video playback. Additionally, users can jump to specific time points within the video using the time entry field and "Jump to Time" button. Upon extracting a frame, the application opens a new window displaying the selected frame along with its histogram and multiple hash values calculated using various algorithms such as MD5, SHA-1, SHA-256, and others. The histogram visualization presents the distribution of pixel values across the RGB channels, aiding in the analysis of color composition within the frame. The hash values are displayed in a listbox within the frame extraction window, providing users with comprehensive information about the frame's content and characteristics. Furthermore, users can open multiple instances of the application simultaneously, enabling concurrent analysis of different video files. The fifth project implements a video player application with edge detection capabilities using various algorithms. The application is designed using the Tkinter library for the graphical user interface (GUI). Upon execution, the user is presented with a window containing control buttons and panels for displaying the video and extracted frames. The main functionalities of the application include opening a video file, playing, pausing, and stopping the video playback. Additionally, users can jump to a specific time in the video, extract frames, and open another instance of the video player application. The video playback is displayed on a canvas, allowing for zooming in and out using a combobox to adjust the scale. One of the key features of this application is the ability to perform edge detection on frames extracted from the video. When a frame is extracted, the application displays the original frame alongside its edge detection result using various algorithms such as Canny, Sobel, Prewitt, Laplacian, Scharr, Roberts, FreiChen, Kirsch, Robinson, Gaussian, or no edge detection. Histogram plots for each RGB channel of the frame are also displayed, along with hash values computed using different hashing algorithms for integrity verification. The edge detection result and histogram plots are updated dynamically based on the selected edge detection algorithm. Overall, this application provides a convenient platform for visualizing video content and performing edge detection analysis on individual frames, making it useful for tasks such as video processing, computer vision, and image analysis. The sixth project is a Python application built using the Tkinter library for creating a graphical user interface (GUI) to play videos and apply various filtering techniques to individual frames. The application allows users to open video files in common formats such as MP4, AVI, and MKV. Once a video is opened, users can play, pause, stop, and jump to specific times within the video. The GUI consists of two main panels: one for displaying the video and another for control buttons. The video panel contains a canvas where the frames of the video are displayed. Users can zoom in or out on the video frames using a combobox, and they can also scroll horizontally through the video using a scrollbar. Control buttons such as play/pause, stop, extract frame, and open another video player are provided in the control panel. When a frame is extracted, the application opens a new window displaying the extracted frame along with options to apply various filtering methods. These methods include Gaussian blur, mean blur, median blur, bilateral filtering, non-local means denoising, anisotropic diffusion, total variation denoising, Wiener filter, adaptive thresholding, and wavelet transform. Users can select a filtering method from a dropdown menu, and the filtered result along with the histogram and hash values of the frame are displayed in real-time. The application also provides functionality to open another instance of the video player, allowing users to work with multiple videos simultaneously. Overall, this project provides a user-friendly interface for playing videos and applying filtering techniques to individual frames, making it useful for tasks such as video processing, analysis, and editing.
Download or read book Python for Artificial Intelligence and Data Science written by Mr.G.Hubert and published by SK Research Group of Companies. This book was released on 2024-09-10 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mr.G.Hubert, Assistant Professor & Head, Department of Artificial Intelligence, S.I.V.E.T. College, Chennai, Tamil Nadu, India. Dr.Sowmya Naik.P.T, Professor & Head, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India. Dr.Ambika.P.R, Professor, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India. Mrs.Laxmi.M.C, Assistant Professor, Department of Computer Science and Engineering, City Engineering College, Bengaluru, Karnataka, India.
Download or read book EMOTION PREDICTION FROM TEXT USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-28 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a captivating book that delves into the intricacies of building a robust system for emotion detection in textual data. Throughout this immersive exploration, readers are introduced to the methodologies, challenges, and breakthroughs in accurately discerning the emotional context of text. The book begins by highlighting the importance of emotion detection in various domains such as social media analysis, customer sentiment evaluation, and psychological research. Understanding human emotions in text is shown to have a profound impact on decision-making processes and enhancing user experiences. Readers are then guided through the crucial stages of data preprocessing, where text is carefully cleaned, tokenized, and transformed into meaningful numerical representations using techniques like Count Vectorization, TF-IDF Vectorization, and Hashing Vectorization. Traditional machine learning models, including Logistic Regression, Random Forest, XGBoost, LightGBM, and Convolutional Neural Network (CNN), are explored to provide a foundation for understanding the strengths and limitations of conventional approaches. However, the focus of the book shifts towards the Long Short-Term Memory (LSTM) model, a powerful variant of recurrent neural networks. Leveraging word embeddings, the LSTM model adeptly captures semantic relationships and long-term dependencies present in text, showcasing its potential in emotion detection. The LSTM model's exceptional performance is revealed, achieving an astounding accuracy of 86% on the test dataset. Its ability to grasp intricate emotional nuances ingrained in textual data is demonstrated, highlighting its effectiveness in capturing the rich tapestry of human emotions. In addition to the LSTM model, the book also explores the Convolutional Neural Network (CNN) model, which exhibits promising results with an accuracy of 85% on the test dataset. The CNN model excels in capturing local patterns and relationships within the text, providing valuable insights into emotion detection. To enhance usability, an intuitive training and predictive interface is developed, enabling users to train their own models on custom datasets and obtain real-time predictions for emotion detection. This interactive interface empowers users with flexibility and accessibility in utilizing the trained models. The book further delves into the performance comparison between the LSTM model and traditional machine learning models, consistently showcasing the LSTM model's superiority in capturing complex emotional patterns and contextual cues within text data. Future research directions are explored, including the integration of pre-trained language models such as BERT and GPT, ensemble techniques for further improvements, and the impact of different word embeddings on emotion detection. Practical applications of the developed system and models are discussed, ranging from sentiment analysis and social media monitoring to customer feedback analysis and psychological research. Accurate emotion detection unlocks valuable insights, empowering decision-making processes and fostering meaningful connections. In conclusion, this project encapsulates a transformative expedition into understanding human emotions in text. By harnessing the power of machine learning techniques, the book unlocks the potential for accurate emotion detection, empowering industries to make data-driven decisions, foster connections, and enhance user experiences. This book serves as a beacon for researchers, practitioners, and enthusiasts venturing into the captivating world of emotion detection in text.
Download or read book Image Analysis and Recognition written by Aurélio Campilho and published by Springer. This book was released on 2016-06-30 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed proceedings of the 13th International Conference on Image Analysis and Recognition, ICIAR 2016, held in Póvoa de Varzim, Portugal, in July 2016. The 79 revised full papers and 10 short papers presented were carefully reviewed and selected from 167 submissions. The papers are organized in the following topical sections: Advances in Data Analytics and Pattern Recognition with Applications, Image Enhancement and Restoration, Image Quality Assessment, Image Segmentation, Pattern Analysis and Recognition, Feature Extraction, Detection and Recognition, Matching, Motion and Tracking, 3D Computer Vision, RGB-D Camera Applications, Visual Perception in Robotics, Biometrics, Biomedical Imaging, Brain Imaging, Cardiovascular Image Analysis, Image Analysis in Ophthalmology, Document Analysis, Applications, and Obituaries. The chapter 'Morphological Separation of Clustered Nuclei in Histological Images' is published open access under a CC BY 4.0 license at link.springer.com.
Download or read book High throughput Image Reconstruction and Analysis written by A. Ravishankar Rao and published by Artech House. This book was released on 2009 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative volume surveys the latest image acquisition advances in serial block face techniques in scanning electron microscopy, knife-edge scanning microscopy, and 4D imaging of multi-component biological systems. The book introduces parallel processing for biological applications. You learn advanced parallelization techniques for decomposing a problem domain and mapping it onto a parallel processing architecture using the message-passing interface (MPI) and OpenMP. Case studies show how these techniques have been successfully used in simulation tasks, data mining, and graphical visualization of biological datasets. You also find coverage of methods for developing scalable biological image databases and for facilitating greater interactive visualization of large image sets.
Download or read book Getting Started with Forex Trading Using Python written by Alex Krishtop and published by Packt Publishing Ltd. This book was released on 2023-03-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the inner workings of today's forex market, the essential risks in forex algo trading, and how to mitigate them Key FeaturesBuild trading applications with research and without advanced Python programming skillsDive into professional fx trading while enhancing your trading apps to be more accurateDevelop simple yet efficient backtesting applications to help keep your expectations realisticBook Description Algorithm-based trading is a popular choice for Python programmers due to its apparent simplicity. However, very few traders get the results they want, partly because they aren't able to capture the complexity of the factors that influence the market. Getting Started with Forex Trading Using Python helps you understand the market and build an application that reaps desirable results. The book is a comprehensive guide to everything that is market-related: data, orders, trading venues, and risk. From the programming side, you'll learn the general architecture of trading applications, systemic risk management, de-facto industry standards such as FIX protocol, and practical examples of using simple Python codes. You'll gain an understanding of how to connect to data sources and brokers, implement trading logic, and perform realistic tests. Throughout the book, you'll be encouraged to further study the intricacies of algo trading with the help of code snippets. By the end of this book, you'll have a deep understanding of the fx market from the perspective of a professional trader. You'll learn to retrieve market data, clean it, filter it, compress it into various formats, apply trading logic, emulate the execution of orders, and test the trading app before trading live. What you will learnExplore the forex market organization and operationsUnderstand the sources of alpha and the concept of algo tradingGet a grasp on typical risks and ways to mitigate themUnderstand fundamental and technical analysisConnect to data sources and check the integrity of market dataUse API and FIX protocol to send ordersTranslate trading ideas into codeRun reliable backtesting emulating real-world market conditionsWho this book is for This book is for financial traders and python developers who are interested in forex trading. Academic researchers looking to focus on practical applications will find this book useful. This book can also help established fx market professionals who want to take the first steps in algo trading. Familiarity with Python and object-oriented programming within the scope of an online course or self-study is a must. Knowledge of network protocols and interfaces is a plus but not a prerequisite, as is specific knowledge about markets and trading.
Download or read book Learning Apache OpenWhisk written by Michele Sciabarrà and published by O'Reilly Media. This book was released on 2019-07-03 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Serverless computing greatly simplifies software development. Your team can focus solely on your application while the cloud provider manages the servers you need. This practical guide shows you step-by-step how to build and deploy complex applications in a flexible multicloud, multilanguage environment using Apache OpenWhisk. You’ll learn how this platform enables you to pursue a vendor-independent approach using preconfigured containers, microservices, and Kubernetes as your cloud operating system. Michele Sciabarrà demonstrates how to build a serverless application using classical design patterns and the programming language or languages that best fit your task. You’ll start by building a simple serverless application hands-on before diving into the more complex aspects of the OpenWhisk platform. Examine how OpenWhisk’s serverless architecture works, including the use of packages, actions, sequences, triggers, rules, and feeds Learn how OpenWhisk compares to existing architectures, such as Java Enterprise Edition Manipulate OpenWhisk features using the command-line interface or a JavaScript API Design applications using common Gang of Four design patterns Use architectural design patterns such as model-view-controller to combine several OpenWhisk actions Learn how to test and debug your code in a serverless environment