Download or read book Mining of Massive Datasets written by Jure Leskovec and published by Cambridge University Press. This book was released on 2014-11-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Download or read book Algorithms and Data Structures for Massive Datasets written by Dzejla Medjedovic and published by Simon and Schuster. This book was released on 2022-08-16 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Download or read book Learning from Imbalanced Data Sets written by Alberto Fernández and published by Springer. This book was released on 2018-10-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.
Download or read book Learning SAS by Example written by Ron Cody and published by SAS Institute. This book was released on 2018-07-03 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to program SAS by example! Learning SAS by Example, A Programmer’s Guide, Second Edition, teaches SAS programming from very basic concepts to more advanced topics. Because most programmers prefer examples rather than reference-type syntax, this book uses short examples to explain each topic. The second edition has brought this classic book on SAS programming up to the latest SAS version, with new chapters that cover topics such as PROC SGPLOT and Perl regular expressions. This book belongs on the shelf (or e-book reader) of anyone who programs in SAS, from those with little programming experience who want to learn SAS to intermediate and even advanced SAS programmers who want to learn new techniques or identify new ways to accomplish existing tasks. In an instructive and conversational tone, author Ron Cody clearly explains each programming technique and then illustrates it with one or more real-life examples, followed by a detailed description of how the program works. The text is divided into four major sections: Getting Started, DATA Step Processing, Presenting and Summarizing Your Data, and Advanced Topics. Subjects addressed include Reading data from external sources Learning details of DATA step programming Subsetting and combining SAS data sets Understanding SAS functions and working with arrays Creating reports with PROC REPORT and PROC TABULATE Getting started with the SAS macro language Leveraging PROC SQL Generating high-quality graphics Using advanced features of user-defined formats and informats Restructuring SAS data sets Working with multiple observations per subject Getting started with Perl regular expressions You can test your knowledge and hone your skills by solving the problems at the end of each chapter.
Download or read book A Handbook of Small Data Sets written by David J. Hand and published by CRC Press. This book was released on 1993-11-01 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book should be of interest to statistics lecturers who want ready-made data sets complete with notes for teaching.
Download or read book Handbook of Massive Data Sets written by James Abello and published by Springer Science & Business Media. This book was released on 2002-03-31 with total page 1244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Massive Data Sets is comprised of articles written by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, clustering methods, wavelets, optimization, external memory algorithms and data structures, the US national cluster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment. The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications.
Download or read book Discovering Statistics Using IBM SPSS Statistics written by Andy Field and published by SAGE. This book was released on 2017-11-03 with total page 2026 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an exciting new look, math diagnostic tool, and a research roadmap to navigate projects, this new edition of Andy Field’s award-winning text offers a unique combination of humor and step-by-step instruction to make learning statistics compelling and accessible to even the most anxious of students. The Fifth Edition takes students from initial theory to regression, factor analysis, and multilevel modeling, fully incorporating IBM SPSS Statistics© version 25 and fascinating examples throughout. SAGE edge offers a robust online environment featuring an impressive array of free tools and resources for review, study, and further exploration, keeping both instructors and students on the cutting edge of teaching and learning. Course cartridges available for Blackboard, Canvas, and Moodle. Andy Field is the award winning author of An Adventure in Statistics: The Reality Enigma and is the recipient of the UK National Teaching Fellowship (2010), British Psychological Society book award (2006), and has been recognized with local and national teaching awards (University of Sussex, 2015, 2016).
Download or read book Handbook of Massive Data Sets written by James Abello and published by Springer. This book was released on 2013-12-21 with total page 1209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proliferation of massive data sets brings with it a series of special computational challenges. This "data avalanche" arises in a wide range of scientific and commercial applications. With advances in computer and information technologies, many of these challenges are beginning to be addressed by diverse inter-disciplinary groups, that indude computer scientists, mathematicians, statisticians and engineers, working in dose cooperation with application domain experts. High profile applications indude astrophysics, bio-technology, demographics, finance, geographi cal information systems, government, medicine, telecommunications, the environment and the internet. John R. Tucker of the Board on Mathe matical Seiences has stated: "My interest in this problern (Massive Data Sets) isthat I see it as the rnost irnportant cross-cutting problern for the rnathernatical sciences in practical problern solving for the next decade, because it is so pervasive. " The Handbook of Massive Data Sets is comprised of articles writ ten by experts on selected topics that deal with some major aspect of massive data sets. It contains chapters on information retrieval both in the internet and in the traditional sense, web crawlers, massive graphs, string processing, data compression, dustering methods, wavelets, op timization, external memory algorithms and data structures, the US national duster project, high performance computing, data warehouses, data cubes, semi-structured data, data squashing, data quality, billing in the large, fraud detection, and data processing in astrophysics, air pollution, biomolecular data, earth observation and the environment.
Download or read book Synthetic Datasets for Statistical Disclosure Control written by Jörg Drechsler and published by Springer Science & Business Media. This book was released on 2011-06-24 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with real data problems like nonresponse, skip patterns, or logical constraints. Each chapter is dedicated to one approach, first describing the general concept followed by a detailed application to a real dataset providing useful guidelines on how to implement the theory in practice. The discussed multiple imputation approaches include imputation for nonresponse, generating fully synthetic datasets, generating partially synthetic datasets, generating synthetic datasets when the original data is subject to nonresponse, and a two-stage imputation approach that helps to better address the omnipresent trade-off between analytical validity and the risk of disclosure. The book concludes with a glimpse into the future of synthetic datasets, discussing the potential benefits and possible obstacles of the approach and ways to address the concerns of data users and their understandable discomfort with using data that doesn’t consist only of the originally collected values. The book is intended for researchers and practitioners alike. It helps the researcher to find the state of the art in synthetic data summarized in one book with full reference to all relevant papers on the topic. But it is also useful for the practitioner at the statistical agency who is considering the synthetic data approach for data dissemination in the future and wants to get familiar with the topic.
Download or read book Massive Data Sets written by National Research Council and published by National Academies Press. This book was released on 1997-02-10 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Descriptions of Data Sets from Meteorological and Terrestrial Applications Spacecraft and Investigations written by and published by . This book was released on 1989 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Maximizing Social Science Research Through Publicly Accessible Data Sets written by Perry, S. Marshall and published by IGI Global. This book was released on 2017-10-31 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making research in all fields of study readily available is imperative in order to circulate new information and upcoming trends. This is possible through the efficient utilization of collections of information. Maximizing Social Science Research Through Publicly Accessible Data Sets is an essential reference source for the latest academic perspectives on a wide range of methodologies and large data sets with the purpose of enhancing research in the areas of human society and social relationships. Featuring coverage on a broad range of topics such as student achievement, teacher efficacy, and instructional leadership, this book is ideally designed for academicians, researchers, and practitioners seeking material on the availability and distribution methods of research content.
Download or read book A Handbook of Small Data Sets written by David J. Hand and published by CRC Press. This book was released on 1993-11-01 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book should be of interest to statistics lecturers who want ready-made data sets complete with notes for teaching.
Download or read book Applied Predictive Modeling written by Max Kuhn and published by Springer Science & Business Media. This book was released on 2013-05-17 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics.
Download or read book Descriptions of Data Sets from Planetary and Heliocentric Spaceccraft and Investigations written by National Space Science Data Center and published by . This book was released on 1987 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning with R written by Brett Lantz and published by Packt Publishing Ltd. This book was released on 2013-10-25 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Download or read book Statistics for People Who Think They Hate Statistics written by Neil J. Salkind and published by SAGE. This book was released on 2007 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this title teaches an often intimidating and difficult subject in a way that is informative, personable, and clear.