EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Federated Learning

    Book Details:
  • Author : Qiang Yang
  • Publisher : Springer Nature
  • Release : 2020-11-25
  • ISBN : 3030630765
  • Pages : 291 pages

Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Book Applied Health Analytics and Informatics Using SAS

Download or read book Applied Health Analytics and Informatics Using SAS written by Joseph M. Woodside and published by . This book was released on 2018-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage health data into insight! Applied Health Analytics and Informatics Using SAS describes health anamatics, a result of the intersection of data analytics and health informatics. Healthcare systems generate nearly a third of the world's data, and analytics can help to eliminate medical errors, reduce readmissions, provide evidence-based care, demonstrate quality outcomes, and add cost-efficient care. This comprehensive textbook includes data analytics and health informatics concepts, along with applied experiential learning exercises and case studies using SAS Enterprise MinerTM within the healthcare industry setting. Topics covered include: Sampling and modeling health data - both structured and unstructured Exploring health data quality Developing health administration and health data assessment procedures Identifying future health trends Analyzing high-performance health data mining models Applied Health Analytics and Informatics Using SAS is intended for professionals, lifelong learners, senior-level undergraduates, graduate-level students in professional development courses, health informatics courses, health analytics courses, and specialized industry track courses. This textbook is accessible to a wide variety of backgrounds and specialty areas, including administrators, clinicians, and executives.

Book Introduction to Computational Health Informatics

Download or read book Introduction to Computational Health Informatics written by Arvind Kumar Bansal and published by CRC Press. This book was released on 2020-01-08 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This class-tested textbook is designed for a semester-long graduate or senior undergraduate course on Computational Health Informatics. The focus of the book is on computational techniques that are widely used in health data analysis and health informatics and it integrates computer science and clinical perspectives. This book prepares computer science students for careers in computational health informatics and medical data analysis. Features Integrates computer science and clinical perspectives Describes various statistical and artificial intelligence techniques, including machine learning techniques such as clustering of temporal data, regression analysis, neural networks, HMM, decision trees, SVM, and data mining, all of which are techniques used widely used in health-data analysis Describes computational techniques such as multidimensional and multimedia data representation and retrieval, ontology, patient-data deidentification, temporal data analysis, heterogeneous databases, medical image analysis and transmission, biosignal analysis, pervasive healthcare, automated text-analysis, health-vocabulary knowledgebases and medical information-exchange Includes bioinformatics and pharmacokinetics techniques and their applications to vaccine and drug development

Book R for Health Data Science

Download or read book R for Health Data Science written by Ewen Harrison and published by CRC Press. This book was released on 2020-12-31 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms.

Book Clinical Research Informatics

    Book Details:
  • Author : Rachel Richesson
  • Publisher : Springer Science & Business Media
  • Release : 2012-02-15
  • ISBN : 1848824475
  • Pages : 415 pages

Download or read book Clinical Research Informatics written by Rachel Richesson and published by Springer Science & Business Media. This book was released on 2012-02-15 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.

Book Clustering and Classification

Download or read book Clustering and Classification written by Phipps Arabie and published by World Scientific. This book was released on 1996 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: At a moderately advanced level, this book seeks to cover the areas of clustering and related methods of data analysis where major advances are being made. Topics include: hierarchical clustering, variable selection and weighting, additive trees and other network models, relevance of neural network models to clustering, the role of computational complexity in cluster analysis, latent class approaches to cluster analysis, theory and method with applications of a hierarchical classes model in psychology and psychopathology, combinatorial data analysis, clusterwise aggregation of relations, review of the Japanese-language results on clustering, review of the Russian-language results on clustering and multidimensional scaling, practical advances, and significance tests.

Book Classification  Data Analysis  and Knowledge Organization

Download or read book Classification Data Analysis and Knowledge Organization written by Hans-Hermann Bock and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: In science, industry, public administration and documentation centers large amounts of data and information are collected which must be analyzed, ordered, visualized, classified and stored efficiently in order to be useful for practical applications. This volume contains 50 selected theoretical and applied papers presenting a wealth of new and innovative ideas, methods, models and systems which can be used for this purpose. It combines papers and strategies from two main streams of research in an interdisciplinary, dynamic and exciting way: On the one hand, mathematical and statistical methods are described which allow a quantitative analysis of data, provide strategies for classifying objects or making exploratory searches for interesting structures, and give ways to make comprehensive graphical displays of large arrays of data. On the other hand, papers related to information sciences, informatics and data bank systems provide powerful tools for representing, modelling, storing and retrieving facts, data and knowledge characterized by qualitative descriptors, semantic relations, or linguistic concepts. The integration of both fields and a special part on applied problems from biology, medicine, archeology, industry and administration assure that this volume will be informative and useful for theory and practice.

Book Population Health Management for Poly Chronic Conditions

Download or read book Population Health Management for Poly Chronic Conditions written by Thomas T.H. Wan and published by Springer. This book was released on 2017-10-24 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to population health management and how it can be used to improve the health care and outcomes for patients with poly chronic conditions. The book uses an integrated approach guided by a transdisciplinary orientation that incorporates both a macro and a micro-theoretical framework for promoting population health management. Thus, policy decision makers can prioritize how limited resources can be used to optimize health service needs of the chronically ill and disabled in the nation as well as in the globe. The book also identifies appropriate applications of health information technology that can facilitate interoperability, data sharing and effective communication to ensure that applicable knowledge is derived from the available information. Multiple implications of population health management for poly chronic conditions suggest that concerted efforts in promoting preventive strategies can yield numerous benefits. Continuous improvement efforts through impact evaluation and a commitment to the adoption of the health information technology resources needed are also critical aspects of this process. Patients with poly chronic conditions have complex needs and are often high-utilizers of health services. Great potential exists to improve the health and health care of these individuals through improved coordination integrating multiple domains of the population health management approach. Population Health Management is needed now more than ever due to the current challenges facing the health care system that were not present in previous decades. This book points out strategic directions suggested by empirical evidence and experts’ opinions on innovative care management solutions observed in many advanced countries.

Book Health Informatics Research Methods

Download or read book Health Informatics Research Methods written by Elizabeth J. Layman and published by Amer Health Information Management. This book was released on 2009 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health informatics students, practitioners, and researchers now have a complete resource specific to the profession. Health Informatics Research Methods: Principles and Practice supports seasoned and novice researchers, students, and educators. The text focuses on the practical applications of research in health informatics and health information management. It provides real-life examples of research with samples of survey instruments, step-by-step listings of methodology for several types of research designs, and examples of statistical analysis tables and explanations. The book's organization guides readers through the process of conducting research specific to health informatics concepts and functions.

Book Biomedical Data Mining for Information Retrieval

Download or read book Biomedical Data Mining for Information Retrieval written by Sujata Dash and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.

Book Registries for Evaluating Patient Outcomes

Download or read book Registries for Evaluating Patient Outcomes written by Agency for Healthcare Research and Quality/AHRQ and published by Government Printing Office. This book was released on 2014-04-01 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.

Book Elements of Dual Scaling

Download or read book Elements of Dual Scaling written by Shizuhiko Nishisato and published by Psychology Press. This book was released on 2014-04-04 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantification methodology of categorical data is a popular topic in many branches of science. Most books, however, are either too advanced for those who need it, or too elementary to gain insight into its potential. This book fills the gap between these extremes, and provides specialists with an easy and comprehensive reference, and others with a complete treatment of dual scaling methodology -- starting with motivating examples, followed by an introductory discussion of necessary quantitative skills, and ending with different perpsectives on dual scaling with examples, advanced topics, and future possibilities. This book attempts to successively upgrade readers' readiness for handling analysis of qualitative, categorical, and non-metric data, without overloading them. The writing style is very friendly, and difficult topics are always accompanied by simple illlustrative examples. There are a number of topics on dual scaling which were previously addressed only in journal articles or in publications that are not readily available. Integration of these topics into the standard framework makes the current book unique, and its extensive coverage of relevant topics is unprecedented. This book will serve as both reference and textbook for all those who want to analyze categorical data effectively.

Book Big Data Analytics in Healthcare

Download or read book Big Data Analytics in Healthcare written by Anand J. Kulkarni and published by Springer Nature. This book was released on 2019-10-01 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes state-of-the-art discussions on various issues and aspects of the implementation, testing, validation, and application of big data in the context of healthcare. The concept of big data is revolutionary, both from a technological and societal well-being standpoint. This book provides a comprehensive reference guide for engineers, scientists, and students studying/involved in the development of big data tools in the areas of healthcare and medicine. It also features a multifaceted and state-of-the-art literature review on healthcare data, its modalities, complexities, and methodologies, along with mathematical formulations. The book is divided into two main sections, the first of which discusses the challenges and opportunities associated with the implementation of big data in the healthcare sector. In turn, the second addresses the mathematical modeling of healthcare problems, as well as current and potential future big data applications and platforms.

Book Artificial Intelligence in Medicine

Download or read book Artificial Intelligence in Medicine written by David Riaño and published by Springer. This book was released on 2019-06-19 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.

Book An Introduction to Correspondence Analysis

Download or read book An Introduction to Correspondence Analysis written by Eric J. Beh and published by John Wiley & Sons. This book was released on 2021-03-29 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the fundamentals of correspondence analysis with this illuminating resource An Introduction to Correspondence Analysis assists researchers in improving their familiarity with the concepts, terminology, and application of several variants of correspondence analysis. The accomplished academics and authors deliver a comprehensive and insightful treatment of the fundamentals of correspondence analysis, including the statistical and visual aspects of the subject. Written in three parts, the book begins by offering readers a description of two variants of correspondence analysis that can be applied to two-way contingency tables for nominal categories of variables. Part Two shifts the discussion to categories of ordinal variables and demonstrates how the ordered structure of these variables can be incorporated into a correspondence analysis. Part Three describes the analysis of multiple nominal categorical variables, including both multiple correspondence analysis and multi-way correspondence analysis. Readers will benefit from explanations of a wide variety of specific topics, for example: Simple correspondence analysis, including how to reduce multidimensional space, measuring symmetric associations with the Pearson Ratio, constructing low-dimensional displays, and detecting statistically significant points Non-symmetrical correspondence analysis, including quantifying asymmetric associations Simple ordinal correspondence analysis, including how to decompose the Pearson Residual for ordinal variables Multiple correspondence analysis, including crisp coding and the indicator matrix, the Burt Matrix, and stacking Multi-way correspondence analysis, including symmetric multi-way analysis Perfect for researchers who seek to improve their understanding of key concepts in the graphical analysis of categorical data, An Introduction to Correspondence Analysis will also assist readers already familiar with correspondence analysis who wish to review the theoretical and foundational underpinnings of crucial concepts.

Book Healthcare Data Analytics

Download or read book Healthcare Data Analytics written by Chandan K. Reddy and published by CRC Press. This book was released on 2015-06-23 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available

Book Maritime Informatics

Download or read book Maritime Informatics written by Mikael Lind and published by Springer Nature. This book was released on 2021-05-17 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shipping is the world’s oldest sharing economy and is conducted in a self-organizing manner. Shipping is capital, energy, and information intensive, and with the growing impact of digitalization and climate change, there is a need to rethink the management and operations of this critical global industry - assisted in no small way by maritime informatics. Building upon the recently published inaugural book Maritime Informatics by Springer, this book will address some of the most recent practical developments and experiences, particularly from a global perspective. The focus of the book is to address contemporary movements to tackle global concerns and to complement Maritime Informatics.