Download or read book D modules Representation Theory and Quantum Groups written by Louis Boutet de Monvel and published by Springer. This book was released on 2006-11-15 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS: L. Boutet de Monvel: Indice de systemes differentiels.- C. De Concini, C. Procesi: Quantum groups.- P. Schapira, J.P. Schneiders: Index theorems for R-constructible sheaves and for D-modules.- N. Berline, M. Vergne: The equivariant Chern character and index of G-invariant operators.
Download or read book Representation Theory of Algebraic Groups and Quantum Groups written by Toshiaki Shoji and published by American Mathematical Society(RI). This book was released on 2004 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.
Download or read book Lie Groups Geometry and Representation Theory written by Victor G. Kac and published by Springer. This book was released on 2018-12-12 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to the memory of the great American mathematician Bertram Kostant (May 24, 1928 – February 2, 2017), is a collection of 19 invited papers by leading mathematicians working in Lie theory, representation theory, algebra, geometry, and mathematical physics. Kostant’s fundamental work in all of these areas has provided deep new insights and connections, and has created new fields of research. This volume features the only published articles of important recent results of the contributors with full details of their proofs. Key topics include: Poisson structures and potentials (A. Alekseev, A. Berenstein, B. Hoffman) Vertex algebras (T. Arakawa, K. Kawasetsu) Modular irreducible representations of semisimple Lie algebras (R. Bezrukavnikov, I. Losev) Asymptotic Hecke algebras (A. Braverman, D. Kazhdan) Tensor categories and quantum groups (A. Davydov, P. Etingof, D. Nikshych) Nil-Hecke algebras and Whittaker D-modules (V. Ginzburg) Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang) Kashiwara crystals (A. Joseph) Characters of highest weight modules (V. Kac, M. Wakimoto) Alcove polytopes (T. Lam, A. Postnikov) Representation theory of quantized Gieseker varieties (I. Losev) Generalized Bruhat cells and integrable systems (J.-H. Liu, Y. Mi) Almost characters (G. Lusztig) Verlinde formulas (E. Meinrenken) Dirac operator and equivariant index (P.-É. Paradan, M. Vergne) Modality of representations and geometry of θ-groups (V. L. Popov) Distributions on homogeneous spaces (N. Ressayre) Reduction of orthogonal representations (J.-P. Serre)
Download or read book Foundations of Quantum Group Theory written by Shahn Majid and published by Cambridge University Press. This book was released on 2000 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text which systematically lays out the foundations of Quantum Groups.
Download or read book Quantum Groups written by Christian Kassel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Download or read book Perverse Sheaves and Applications to Representation Theory written by Pramod N. Achar and published by American Mathematical Soc.. This book was released on 2021-09-27 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.
Download or read book Introduction to Representation Theory written by Pavel I. Etingof and published by American Mathematical Soc.. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Download or read book Quantum Group Symmetry And Q tensor Algebras written by Lawrence C Biedenharn and published by World Scientific. This book was released on 1995-08-31 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.
Download or read book Representations of Algebraic Groups written by Jens Carsten Jantzen and published by American Mathematical Soc.. This book was released on 2003 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Download or read book Factorizable Sheaves and Quantum Groups written by Roman Bezrukavnikov and published by Springer. This book was released on 2006-11-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.
Download or read book Lectures on Quantum Groups written by Pavel I. Etingof and published by . This book was released on 2010 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Complex Semisimple Quantum Groups and Representation Theory written by Christian Voigt and published by Springer Nature. This book was released on 2020-09-24 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.
Download or read book Representation Theory and Complex Geometry written by Neil Chriss and published by Birkhauser. This book was released on 1997 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an overview of modern advances in representation theory from a geometric standpoint. The techniques developed are quite general and can be applied to other areas such as quantum groups, affine Lie groups, and quantum field theory.
Download or read book D Modules Perverse Sheaves and Representation Theory written by Ryoshi Hotta and published by Springer Science & Business Media. This book was released on 2007-11-07 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Download or read book Bimonoids for Hyperplane Arrangements written by Marcelo Aguiar and published by Cambridge University Press. This book was released on 2020-03-19 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.
Download or read book The Global Theory of Minimal Surfaces in Flat Spaces written by W.H. III Meeks and published by Springer. This book was released on 2004-10-11 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the second half of the twentieth century the global theory of minimal surface in flat space had an unexpected and rapid blossoming. Some of the classical problems were solved and new classes of minimal surfaces found. Minimal surfaces are now studied from several different viewpoints using methods and techniques from analysis (real and complex), topology and geometry. In this lecture course, Meeks, Ros and Rosenberg, three of the main architects of the modern edifice, present some of the more recent methods and developments of the theory. The topics include moduli, asymptotic geometry and surfaces of constant mean curvature in the hyperbolic space.
Download or read book Recent Advances in Representation Theory Quantum Groups Algebraic Geometry and Related Topics written by Pramod M. Achar and published by American Mathematical Society. This book was released on 2014-08-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.