Download or read book D modules Local formal convolution of elementary formal meromorphic connections written by Robert Gelb and published by Logos Verlag Berlin GmbH. This book was released on 2015 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the classical theorem of Levelt-Turrittin-Malgrange and its refined version, developed by Claude Sabbah, any meromorphic connection over the field of formal Laurent series in one variable can be decomposed in a direct sum of so called elementary formal meromorphic connections. Changing the perspective, one can also study operations that can be carried out with such special differential modules. There are already formulas for the tensor product or the local formal Fourier transform, for example. This thesis analyses the local formal convolution (the multiplicative case as well as the additive case) of two elementary formal meromorphic connections and how the convolution can itself be decomposed into a direct sum of elementary formal meromorphic connections again.
Download or read book Hodge Ideals written by Mircea Mustaţă and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
Download or read book Berkeley Lectures on P adic Geometry written by Peter Scholze and published by Princeton University Press. This book was released on 2020-05-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.
Download or read book Asymptotic Expansions for Ordinary Differential Equations written by Wolfgang Wasow and published by Courier Dover Publications. This book was released on 2018-03-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding text concentrates on the mathematical ideas underlying various asymptotic methods for ordinary differential equations that lead to full, infinite expansions. "A book of great value." — Mathematical Reviews. 1976 revised edition.
Download or read book Motivic Aspects of Hodge Theory written by Chris Peters and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes are based on a series of lectures given at the Tata Institute of Fundamental Research, Mumbai, in 2007, on the theme of Hodge theoretic motives associated to various geometric objects. Starting with the topological setting, the notes go on to Hodge theory and mixed Hodge theory on the cohomology of varieties. Degenerations, limiting mixed Hodge structures and the relation to singularities are addressed next. The original proof of Bittner's theorem on the Grothendieck group of varieties, with some applications, is presented as an appendix to one of the chapters. The situation of relative varieties is addressed next using the machinery of mixed Hodge modules. Chern classes for singular varieties are explained in the motivic setting using Bittner's approach, and their full functorial meaning is made apparent using mixed Hodge modules. An appendix explains the treatment of Hodge characteristic in relation with motivic integration and string theory. Throughout these notes, emphasis is placed on explaining concepts and giving examples.
Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.
Download or read book Schubert Calculus and Its Applications in Combinatorics and Representation Theory written by Jianxun Hu and published by Springer Nature. This book was released on 2020-10-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.
Download or read book Elliptic Boundary Problems for Dirac Operators written by Bernhelm Booß-Bavnbek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
Download or read book Discriminants Resultants and Multidimensional Determinants written by Israel M. Gelfand and published by Springer Science & Business Media. This book was released on 2009-05-21 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book revives and vastly expands the classical theory of resultants and discriminants. Most of the main new results of the book have been published earlier in more than a dozen joint papers of the authors. The book nicely complements these original papers with many examples illustrating both old and new results of the theory."—Mathematical Reviews
Download or read book Complex Analysis written by Elias M. Stein and published by Princeton University Press. This book was released on 2010-04-22 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Download or read book Analytic Combinatorics in Several Variables written by Robin Pemantle and published by Cambridge University Press. This book was released on 2013-05-31 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at graduate students and researchers in enumerative combinatorics, this book is the first to treat the analytic aspects of combinatorial enumeration from a multivariate perspective.
Download or read book L2 Invariants Theory and Applications to Geometry and K Theory written by Wolfgang Lück and published by Springer Science & Business Media. This book was released on 2002-08-06 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Download or read book An Introduction to Invariants and Moduli written by Shigeru Mukai and published by Cambridge University Press. This book was released on 2003-09-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample Text
Download or read book Mixed Hodge Structures written by Chris A.M. Peters and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.
Download or read book An Introduction to the Langlands Program written by Joseph Bernstein and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Each of the twelve chapters focuses on a particular topic devoted to special cases of the program. The book is suitable for graduate students and researchers.
Download or read book Number Theory and Physics written by Jean-Marc Luck and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: 7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.
Download or read book Regular and Irregular Holonomic D Modules written by Masaki Kashiwara and published by Cambridge University Press. This book was released on 2016-05-26 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified treatment of the Riemann-Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.