EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Critical Point Theory and Its Applications

Download or read book Critical Point Theory and Its Applications written by Wenming Zou and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest research in critical point theory, describing methods and presenting the newest applications. Coverage includes extrema, even valued functionals, weak and double linking, sign changing solutions, Morse inequalities, and cohomology groups. Applications described include Hamiltonian systems, Schrödinger equations and systems, jumping nonlinearities, elliptic equations and systems, superlinear problems and beam equations.

Book Minimax Methods in Critical Point Theory with Applications to Differential Equations

Download or read book Minimax Methods in Critical Point Theory with Applications to Differential Equations written by Paul H. Rabinowitz and published by American Mathematical Soc.. This book was released on 1986-07-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.

Book Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems

Download or read book Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems written by Leszek Gasinski and published by CRC Press. This book was released on 2004-07-27 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances. This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature. Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.

Book Critical Point Theory

    Book Details:
  • Author : Martin Schechter
  • Publisher : Springer Nature
  • Release : 2020-05-30
  • ISBN : 303045603X
  • Pages : 347 pages

Download or read book Critical Point Theory written by Martin Schechter and published by Springer Nature. This book was released on 2020-05-30 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author’s own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book’s main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.

Book Critical Point Theory and Submanifold Geometry

Download or read book Critical Point Theory and Submanifold Geometry written by Richard S. Palais and published by Springer. This book was released on 2006-11-14 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Critical Point Theory in Global Analysis and Differential Topology

Download or read book Critical Point Theory in Global Analysis and Differential Topology written by and published by Academic Press. This book was released on 2014-05-14 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Critical Point Theory in Global Analysis and Differential Topology

Book Linking Methods in Critical Point Theory

Download or read book Linking Methods in Critical Point Theory written by Martin Schechter and published by Springer Science & Business Media. This book was released on 1999-07-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is well known, The Great Divide (a.k.a. The Continental Divide) is formed by the Rocky Mountains stretching from north to south across North America. It creates a virtual "stone wall" so high that wind, rain, snow, etc. cannot cross it. This keeps the weather distinct on both sides. Since railroad trains cannot climb steep grades and tunnels through these mountains are almost formidable, the Canadian Pacific Railroad searched for a mountain pass providing the lowest grade for its tracks. Employees discovered a suitable mountain pass, called the Kicking Horse Pass, el. 5404 ft., near Banff, Alberta. (One can speculate as to the reason for the name.) This pass is also used by the Trans-Canada Highway. At the highest point of the pass the railroad tracks are horizontal with mountains rising on both sides. A mountain stream divides into two branches, one flowing into the Atlantic Ocean and the other into the Pacific. One can literally stand (as the author did) with one foot in the Atlantic Ocean and the other in the Pacific. The author has observed many mountain passes in the Rocky Mountains and Alps. What connections do mountain passes have with nonlinear partial dif ferential equations? To find out, read on ...

Book Critical Point Theory and Hamiltonian Systems

Download or read book Critical Point Theory and Hamiltonian Systems written by Jean Mawhin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: FACHGEB The last decade has seen a tremendous development in critical point theory in infinite dimensional spaces and its application to nonlinear boundary value problems. In particular, striking results were obtained in the classical problem of periodic solutions of Hamiltonian systems. This book provides a systematic presentation of the most basic tools of critical point theory: minimization, convex functions and Fenchel transform, dual least action principle, Ekeland variational principle, minimax methods, Lusternik- Schirelmann theory for Z2 and S1 symmetries, Morse theory for possibly degenerate critical points and non-degenerate critical manifolds. Each technique is illustrated by applications to the discussion of the existence, multiplicity, and bifurcation of the periodic solutions of Hamiltonian systems. Among the treated questions are the periodic solutions with fixed period or fixed energy of autonomous systems, the existence of subharmonics in the non-autonomous case, the asymptotically linear Hamiltonian systems, free and forced superlinear problems. Application of those results to the equations of mechanical pendulum, to Josephson systems of solid state physics and to questions from celestial mechanics are given. The aim of the book is to introduce a reader familiar to more classical techniques of ordinary differential equations to the powerful approach of modern critical point theory. The style of the exposition has been adapted to this goal. The new topological tools are introduced in a progressive but detailed way and immediately applied to differential equation problems. The abstract tools can also be applied to partial differential equations and the reader will also find the basic references in this direction in the bibliography of more than 500 items which concludes the book. ERSCHEIN

Book Duality and Perturbation Methods in Critical Point Theory

Download or read book Duality and Perturbation Methods in Critical Point Theory written by N. Ghoussoub and published by Cambridge University Press. This book was released on 2008-08-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on min-max methods, Professor Ghoussoub systematically develops a general theory that can be applied in a variety of situations. In so doing he also presents a whole new array of duality and perturbation methods. The prerequisites for following this book are relatively few; an appendix sketching certain methods in analysis makes the book self-contained.

Book The Mathematical Imagination

Download or read book The Mathematical Imagination written by Matthew Handelman and published by Fordham Univ Press. This book was released on 2019-03-05 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an archeology of the undeveloped potential of mathematics for critical theory. As Max Horkheimer and Theodor W. Adorno first conceived of the critical project in the 1930s, critical theory steadfastly opposed the mathematization of thought. Mathematics flattened thought into a dangerous positivism that led reason to the barbarism of World War II. The Mathematical Imagination challenges this narrative, showing how for other German-Jewish thinkers, such as Gershom Scholem, Franz Rosenzweig, and Siegfried Kracauer, mathematics offered metaphors to negotiate the crises of modernity during the Weimar Republic. Influential theories of poetry, messianism, and cultural critique, Handelman shows, borrowed from the philosophy of mathematics, infinitesimal calculus, and geometry in order to refashion cultural and aesthetic discourse. Drawn to the austerity and muteness of mathematics, these friends and forerunners of the Frankfurt School found in mathematical approaches to negativity strategies to capture the marginalized experiences and perspectives of Jews in Germany. Their vocabulary, in which theory could be both mathematical and critical, is missing from the intellectual history of critical theory, whether in the work of second generation critical theorists such as Jürgen Habermas or in contemporary critiques of technology. The Mathematical Imagination shows how Scholem, Rosenzweig, and Kracauer’s engagement with mathematics uncovers a more capacious vision of the critical project, one with tools that can help us intervene in our digital and increasingly mathematical present. The Mathematical Imagination is available from the publisher on an open-access basis.

Book Real Mathematical Analysis

    Book Details:
  • Author : Charles Chapman Pugh
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-19
  • ISBN : 0387216847
  • Pages : 445 pages

Download or read book Real Mathematical Analysis written by Charles Chapman Pugh and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.

Book Advanced Calculus  Revised Edition

Download or read book Advanced Calculus Revised Edition written by Lynn Harold Loomis and published by World Scientific Publishing Company. This book was released on 2014-02-26 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Book Variational Analysis

    Book Details:
  • Author : R. Tyrrell Rockafellar
  • Publisher : Springer Science & Business Media
  • Release : 2009-06-26
  • ISBN : 3642024319
  • Pages : 747 pages

Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Book Foundations of Analysis

Download or read book Foundations of Analysis written by Joseph L. Taylor and published by American Mathematical Soc.. This book was released on 2012 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.

Book Methods in Nonlinear Analysis

Download or read book Methods in Nonlinear Analysis written by Kung-Ching Chang and published by Springer Science & Business Media. This book was released on 2005-11-21 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.

Book Topological Methods in Differential Equations and Inclusions

Download or read book Topological Methods in Differential Equations and Inclusions written by Andrzej Granas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.

Book A Primer to the Theory of Critical Phenomena

Download or read book A Primer to the Theory of Critical Phenomena written by Jurgen M. Honig and published by Elsevier. This book was released on 2018-02-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Primer to the Theory of Critical Phenomena provides scientists in academia and industry, as well as graduate students in physics, chemistry, and geochemistry with the scientific fundamentals of critical phenomena and phase transitions. The book helps readers broaden their understanding of a field that has developed tremendously over the last forty years. The book also makes a great resource for graduate level instructors at universities. - Provides a thorough and accessible treatment of the fundamentals of critical phenomena - Offers an in-depth exposition on renormalization and field theory techniques - Includes experimental observations of critical effects - Includes live examples illustrating the applications of the theoretical material