EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hydraulic Fracture Modeling

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity

Download or read book Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity written by Mengting Li and published by Cuvillier Verlag. This book was released on 2018-12-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.

Book Unconventional Reservoir Geomechanics

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Book Hydraulic Fracturing in Unconventional Reservoirs

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today’s newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. Helps readers understand drilling and production technology and operations in shale gas through real-field examples Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference Presents the latest operations and applications in all facets of fracturing

Book Development of a Three dimensional  Three phase Coupled Model for Simulating Hydraulic Fracture Propagation and Long term Recovery in Tight Gas Reservoirs

Download or read book Development of a Three dimensional Three phase Coupled Model for Simulating Hydraulic Fracture Propagation and Long term Recovery in Tight Gas Reservoirs written by Mohamad Zeini Jahromi and published by . This book was released on 2013 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Exploitation of Unconventional Oil and Gas Resources

Download or read book Exploitation of Unconventional Oil and Gas Resources written by Kenneth Imo-Imo Israel Eshiet and published by . This book was released on 2019-07-10 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stimulation of unconventional hydrocarbon reservoirs is proven to improve their productivity to an extent that has rendered them economically viable. Generally, the stimulation design is a complex process dependent on intertwining factors such as the history of the formation, rock and reservoir fluid type, lithology and structural layout of the formation, cost, time, etc. A holistic grasp of these can be daunting, especially for people without sufficient experience and/or expertise in the exploitation of unconventional hydrocarbon reserves. This book presents the key facets integral to producing unconventional resources, and how the different components, if pieced together, can be used to create an integrated stimulation design. Areas covered are as follows: • stimulation methods, • fracturing fluids, • mixing and behavior of reservoir fluids, • assessment of reservoir performance, • integration of surface drilling data, • estimation of geomechanical properties and hydrocarbon saturation, and • health and safety. Exploitation of Unconventional Oil and Gas Resources: Hydraulic Fracturing and Other Recovery and Assessment Techniques is an excellent introduction to the subject area of unconventional oil and gas reservoirs, but it also complements existing information in the same discipline. It is an essential text for higher education students and professionals in academia, research, and the industry.

Book Numerical Simulation of Complex Hydraulic Fracture Development by Coupling Geo mechanical and Reservoir Simulator

Download or read book Numerical Simulation of Complex Hydraulic Fracture Development by Coupling Geo mechanical and Reservoir Simulator written by Yu Wang and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is one of the standard techniques adopted by oil and gas industries to enhance production in unconditional reservoirs. Reservoir properties and treatment designs have a significant influence on the effectiveness of hydraulic fracturing treatments. Extensive studies on the mechanism of hydraulic fracturing have been conducted to optimize the hydraulic fracturing design. Recent advances in fracture diagnostic technology have brought new insights to the complex fracture geometry. Numerical simulation is an economical approach to investigate the generation of fracture geometry and its effect on post-treatment production enhancement. This work proposes a workflow to study the fracture complexity through coupling the geomechanical simulator Irazu and the reservoir simulator CMG. The geo-mechanical simulator is devised to simulate the hydraulic fracturing process employing the hybrid finite-discrete element method while the reservoir simulator CMG is used for the reservoir post-treatment production forecast.

Book Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs

Download or read book Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs written by Kan Wu and published by . This book was released on 2015 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful creations of multiple hydraulic fractures in horizontal wells are critical for economic development of unconventional reservoirs. The recent advances in diagnostic techniques suggest that multi-fracturing stimulation in unconventional reservoirs has often caused complex fracture geometry. The most important factors that might be responsible for the fracture complexity are fracture interaction and the intersection of the hydraulic and natural fracture. The complexity of fracture geometry results in significant uncertainty in fracturing treatment designs and production optimization. Modeling complex fracture propagation can provide a vital link between fracture geometry and stimulation treatments and play a significant role in economically developing unconventional reservoirs. In this research, a novel fracture propagation model was developed to simulate complex hydraulic fracture propagation in unconventional reservoirs. The model coupled rock deformation with fluid flow in the fractures and the horizontal wellbore. A Simplified Three Dimensional Displacement Discontinuity Method (S3D DDM) was proposed to describe rock deformation, calculating fracture opening and shearing as well as fracture interaction. This simplified 3D method is much more accurate than faster pseudo-3D methods for describing multiple fracture propagation but requires significantly less computational effort than fully three-dimensional methods. The mechanical interaction can enhance opening or induce closing of certain crack elements or non-planar propagation. Fluid flow in the fracture and the associated pressure drop were based on the lubrication theory. Fluid flow in the horizontal wellbore was treated as an electrical circuit network to compute the partition of flow rate between multiple fractures and maintain pressure compatibility between the horizontal wellbore and multiple fractures. Iteratively and fully coupled procedures were employed to couple rock deformation and fluid flow by the Newton-Raphson method and the Picard iteration method. The numerical model was applied to understand physical mechanisms of complex fracture geometry and offer insights for operators to design fracturing treatments and optimize the production. Modeling results suggested that non-planar fracture geometry could be generated by an initial fracture with an angle deviating from the direction of the maximum horizontal stress, or by multiple fracture propagation in closed spacing. Stress shadow effects are induced by opening fractures and affect multiple fracture propagation. For closely spaced multiple fractures growing simultaneously, width of the interior fractures are usually significantly restricted, and length of the exterior fractures are much longer than that of the interior fractures. The exterior fractures receive most of fluid and dominate propagation, resulting in immature development of the interior fractures. Natural fractures could further complicate fracture geometry. When a hydraulic fracture encounters a natural fracture and propagates along the pre-existing path of the natural fracture, fracture width on the natural fracture segment will be restricted and injection pressure will increase, as a result of stress shadow effects from hydraulic fracture segments and additional closing stresses from in-situ stress field. When multiple fractures propagate in naturally fracture reservoirs, complex fracture networks could be induced, which are affected by perforation cluster spacing, differential stress and natural fracture patterns. Combination of our numerical model and diagnostic methods (e.g. Microseismicity, DTS and DAS) is an effective approach to accurately characterize the complex fracture geometry. Furthermore, the physics-based complex fracture geometry provided by our model can be imported into reservoir simulation models for production analysis.

Book Simulation and Production Evaluation of Multiple stage Hydraulic Fracturing in Horizontal Wellbores

Download or read book Simulation and Production Evaluation of Multiple stage Hydraulic Fracturing in Horizontal Wellbores written by Mahdi Haddad and published by . This book was released on 2017 with total page 1150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale formations have globally emerged as the sustainable hydrocarbon resources in the advent of the technologies for the economic production from these formations: horizontal drilling combined with multiple-stage hydraulic fracturing. The viable production from these resources requires a maximized stimulated reservoir volume encompassing a complex induced fracture network, which is highly dependent on the stimulation design. The optimization of the ultimate recovery requires integrated fracturing models with reservoir models in virtue of the limitations on the field data acquisition and their reliability, the high-cost of re-stimulation plans, and low-fidelity current reservoir simulation workflows. We proposed 2D and 3D hydraulic-fracturing models on the basis of the cohesive zone model (CZM) and extended finite element method (XFEM) with a combination of the following capabilities: (1) inclusion of fracture intersections via pore-pressure coupling; (2) fully-coupled poroelasticity in matrix, continuum-based leakoff, and slit flow in fracture(s) with the cohesive behavior for fracture growth. These models were validated in comparison with KGD solution, and were employed for the hydraulic-fracturing design and understanding microseismic event distributions. Moreover, the output of these models in a specific 2D case was integrated with a reservoir simulation workflow for the prediction of long-term production from the induced fracture network. Our 2D and 3D fracture-intersection cases demonstrate the significant role of the following parameters in the growth pattern of fractures upon intersection: (1) the length of the initially open segment of the natural fracture at the intersection; (2) the horizontal stress contrast; (3) the distance between the injection point and the intersection. Notably, hydraulic fracturing in higher depths with higher horizontal stress contrasts and closer injection points to the intersection causes more extensive natural-fracture opening and shear slippage. Also, we demonstrated the application of the proposed 3D fracture intersection model for further understanding of the anomalies observed in the Vaca Muerta Shale. This study revealed that the microseismic events at shallower depths, later times, and deviated from the expected planar distribution are mainly associated with shear slippage along weak interfaces due to the induced stresses by hydraulic fracturing. Thereby, our explicit modeling of fluid infiltration into the natural fracture(s) at the intersection leads to better understanding of the nature of microseismic events. Our multiple-stage, multiple-wellbore, hydraulic-fracturing model for naturally fractured reservoirs includes the operational and field components during the shale stimulations such as perforation tunnel length distribution, horizontal wellbores, stochastically-retrieved fully-cemented natural-fracture network, plugs for the stage stimulation (via connector elements), and external stimulation scenarios (controlled by programming the connector elements in an external user subroutine). The application of this model on synthetic cases shows the following: (1) sequential fracturing with limited number of clusters per stage leads to more control on the cluster stimulation in the presence of the non-uniform perforation tunnel length distribution and wellbore model; (2) proportional cluster efficiency with the perforation tunnel length (promoting the consistent perforation technology); (3) over-estimation of the cluster stimulation in the absence of the wellbore model and/or the natural-fracture network; and (4) more-viscous fracturing fluids conclude less complex induced fracture network (in agreement with the common field observations). The initial natural-fracture network in this model was retrieved from the proposed object-based method. Also, the transfer of the induced fracture network into an embedded discrete fracture model is featured by the higher fidelity in the estimation of long-term gas production from naturally fractured reservoirs. For the investigation of the effect of in-situ stresses on the reservoir engineering problems, we implemented the coupling of a geomechanics module with the UTCOMP reservoir simulator. We first validated this implementation via comparing the results with GPAS and CMG results at various cases. Our improvements in the geomechanics module (lowering the frequency of calling the geomechanics module and the order of the finite-element shape functions) significantly reduced the computational expenses while maintaining the solution accuracy. Overall, water flooding shows more sensitivity to the number of the reservoir-simulation time steps per geomechanics call than gas flooding cases (e.g., CO2 injection). Our reservoir simulation model for re-fracturing included various injection and production steps to show the effect of the re-fracturing fluid injection in a depleted formation on the ultimate recovery. This study showed the significant effect of the re-fracturing water injection in production via changing a single-phase to two-phase gas flow regime and deeper water invasion into the matrix due to the pressure depletion (after primary production)

Book Numerical Simulation in Hydraulic Fracturing  Multiphysics Theory and Applications

Download or read book Numerical Simulation in Hydraulic Fracturing Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Book Geomechanics and Hydraulic Fracturing for Shale Reservoirs

Download or read book Geomechanics and Hydraulic Fracturing for Shale Reservoirs written by Yu Wang and published by Scientific Research Publishing, Inc. USA. This book was released on 2020-07-01 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.

Book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

Download or read book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs written by Ali Moinfar and published by . This book was released on 2013 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements.

Book Coupled Flow and Geomechanics Modeling for Fractured Poroelastic Reservoirs

Download or read book Coupled Flow and Geomechanics Modeling for Fractured Poroelastic Reservoirs written by Gurpreet Singh and published by . This book was released on 2014 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tight gas and shale oil play an important role in energy security and in meeting an increasing energy demand. Hydraulic fracturing is a widely used technology for recovering these resources. The design and evaluation of hydraulic fracture operation is critical for efficient production from tight gas and shale plays. The efficiency of fracturing jobs depends on the interaction between hydraulic (induced) and naturally occurring discrete fractures. In this work, a coupled reservoir-fracture flow model is described which accounts for varying reservoir geometries and complexities including non-planar fractures. Different flow models such as Darcy flow and Reynold's lubrication equation for fractures and reservoir, respectively are utilized to capture flow physics accurately. Furthermore, the geomechanics effects have been included by considering a multiphase Biot's model. An accurate modeling of solid deformations necessitates a better estimation of fluid pressure inside the fracture. The fractures and reservoir are modeled explicitly allowing accurate representation of contrasting physical descriptions associated with each of the two. The approach presented here is in contrast with existing averaging approaches such as dual and discrete-dual porosity models where the effects of fractures are averaged out. A fracture connected to an injection well shows significant width variations as compared to natural fractures where these changes are negligible. The capillary pressure contrast between the fracture and the reservoir is accounted for by utilizing different capillary pressure curves for the two features. Additionally, a quantitative assessment of hydraulic fracturing jobs relies upon accurate predictions of fracture growth during slick water injection for single and multistage fracturing scenarios. It is also important to consistently model the underlying physical processes from hydraulic fracturing to long-term production. A recently introduced thermodynamically consistent phase-field approach for pressurized fractures in porous medium is utilized which captures several characteristic features of crack propagation such as joining, branching and non-planar propagation in heterogeneous porous media. The phase-field approach captures both the fracture-width evolution and the fracture-length propagation. In this work, the phase-field fracture propagation model is briefly discussed followed by a technique for coupling this to a fractured poroelastic reservoir simulator. We also present a general compositional formulation using multipoint flux mixed finite element (MFMFE) method on general hexahedral grids with a future prospect of treating energized fractures. The mixed finite element framework allows for local mass conservation, accurate flux approximation and a more general treatment of boundary conditions. The multipoint flux inherent in MFMFE scheme allows the usage of a full permeability tensor. An accurate treatment of diffusive/dispersive fluxes owing to additional velocity degrees of freedom is also presented. The applications areas of interest include gas flooding, CO2 sequestration, contaminant removal and groundwater remediation.

Book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro mechanical coupling effects

Download or read book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro mechanical coupling effects written by Lei Zhou and published by Cuvillier Verlag. This book was released on 2014-03-20 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, two new numerical approaches for hydraulic fracturing in tight reservoir were developed. A more physical-based numerical 3D-model was developed for simulating the whole hydraulic fracturing process including fracture propagation, closure and contact as well as proppant transport and settling. In this approach rock formation, pore and fracture systems were assembled together, in which hydro-mechanical coupling effect, proppant transport and settling as well as their influences on fracture closure and contact were fully considered. A combined FDM and FVM schema was used to solve the problem. Three applications by using the new approach were presented. The results illustrated the whole hydraulic fracturing process well and seemed to be logical, which confirmed the ability of the developed approach to model the in-situ hydraulic fracturing operation from injection start till fully closure. In order to investigate the orientation problem of hydraulic fracturing in tight reservoir, a new approach for simulating arbitrary fracture propagation and orientation in 2D was developed. It was solved by a hybrid schema of XFEM and FVM. Three numerical studies were illustrated, which proved the ability of the developed approach to solve the orientation problem in field cases.

Book Unconventional Tight Reservoir Simulation  Theory  Technology and Practice

Download or read book Unconventional Tight Reservoir Simulation Theory Technology and Practice written by Qiquan Ran and published by Springer Nature. This book was released on 2020-08-14 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically introduces readers to the simulation theory and techniques of multiple media for unconventional tight reservoirs. It summarizes the macro/microscopic heterogeneities; the features of multiscale multiple media; the characteristics of complex fluid properties; the occurrence state of continental tight oil and gas reservoirs in China; and the complex flow characteristics and coupled production mechanism under unconventional development patterns. It also discusses the simulation theory of multiple media for unconventional tight oil and gas reservoirs; mathematic model of flow through discontinuous multiple media; geological modeling of discrete multiscale multiple media; and the simulation of multiscale, multiphase flow regimes and multiple media. In addition to the practical application of simulation and software for unconventional tight oil and gas, it also explores the development trends and prospects of simulation technology. The book is of interest to scientific researchers and technicians engaged in the development of oil and gas reservoirs, and serves as a reference resource for advanced graduate students in fields related to petroleum.

Book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs

Download or read book Coupled Geomechanics and Multiphase Flow Modeling in Naturally and Hydraulically Fractured Reservoirs written by Yanli Pei and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid injection and production in highly fractured unconventional reservoirs could induce complex stress reorientation and redistribution. The strong stress sensitivity of fractured formations may also lead to non-negligible fracture opening or closure under the reservoir loading or unloading process. Hence, a coupled flow and geomechanics model is in high demand to assist with stress prediction and production forecast in unconventional reservoirs. In this dissertation, an enhanced geomechanics model is developed for fractured reservoirs and integrated with the in-house compositional reservoir simulator – UTCOMP for coupled flow and geomechanics modeling. The multiphase flow model is solved using the finite volume method (FVM) with an embedded discrete fracture model (EDFM) to represent flow through complex fractures. Based on static fracture assumption, the finite element method (FEM) is applied to solve the geomechanics model by incorporating fracture effects on rock deformation through pore pressure changes. An iterative coupling procedure is implemented between fluid flow and geomechanics, and the 3D coupled model is applied to predict spatiotemporal stress evolution in single-layer and multilayer unconventional reservoirs. To consider dynamic fracture properties, the geomechanics model is further enhanced by the extended finite element method (XFEM) with a modified linear elastic proppant model. The fracture surface is under the coeffects of pore pressure and proppant particles, and various enrichment functions are introduced to reproduce the discontinuous fields over fracture paths. The enhanced geomechanics model is validated against classical Sneddon and Elliot’s problem and presents a first-order spatial convergence rate. Numerical studies indicate that modeling fracture closure is necessary for poorly propped, highly stressed, or fast depleted reservoirs, and fracture opening can be significant under high permeability and low stiffness conditions. The coupled flow and geomechanics model is finally combined with a displacement discontinuity method (DDM) hydraulic fracture model to establish an integrated reservoir-geomechanics-fracture model for the end-to-end optimization of secondary stimulations. It is applied to Permian Basin and Sichuan Basin tight formations to optimize parent-child well spacing at different infill times. The integrated model provides hands-on guidelines for refracturing and infill drilling in multilayer unconventional reservoirs and can be easily adapted to other basins under their unique data