EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Correct Models of Parallel Computing

Download or read book Correct Models of Parallel Computing written by S. Noguchi and published by IOS Press. This book was released on 1997 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 21st century will be the age of network computing. Among the many key technologies in this field, parallel computing and networking technology will play very important roles. In this book emphasis is placed on networking and modeling parallel computing. The topics cover parallel computing algorithms, parallel software, massively parallel computing systems and related applications. Articles cover parallel computing, networking and related applications, to initiate discussions. Since the appearance of Transputer chip T9000, C104, and standardizations of IEEE1355, Transputer systems seem to have opened a new interesting area of parallel computing, networking and many practical applications.

Book Programming Models for Parallel Computing

Download or read book Programming Models for Parallel Computing written by Pavan Balaji and published by MIT Press. This book was released on 2015-11-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng

Book Introduction to Parallel Computing

Download or read book Introduction to Parallel Computing written by Ananth Grama and published by Pearson Education. This book was released on 2003 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.

Book Vector Models for Data parallel Computing

Download or read book Vector Models for Data parallel Computing written by Guy E. Blelloch and published by MIT Press (MA). This book was released on 1990 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Handbook of Parallel Computing

Download or read book Handbook of Parallel Computing written by Sanguthevar Rajasekaran and published by CRC Press. This book was released on 2007-12-20 with total page 1224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability of parallel computing to process large data sets and handle time-consuming operations has resulted in unprecedented advances in biological and scientific computing, modeling, and simulations. Exploring these recent developments, the Handbook of Parallel Computing: Models, Algorithms, and Applications provides comprehensive coverage on a

Book Models for Parallel and Distributed Computation

Download or read book Models for Parallel and Distributed Computation written by R. Correa and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and distributed computation has been gaining a great lot of attention in the last decades. During this period, the advances attained in computing and communication technologies, and the reduction in the costs of those technolo gies, played a central role in the rapid growth of the interest in the use of parallel and distributed computation in a number of areas of engineering and sciences. Many actual applications have been successfully implemented in various plat forms varying from pure shared-memory to totally distributed models, passing through hybrid approaches such as distributed-shared memory architectures. Parallel and distributed computation differs from dassical sequential compu tation in some of the following major aspects: the number of processing units, independent local dock for each unit, the number of memory units, and the programming model. For representing this diversity, and depending on what level we are looking at the problem, researchers have proposed some models to abstract the main characteristics or parameters (physical components or logical mechanisms) of parallel computers. The problem of establishing a suitable model is to find a reasonable trade-off among simplicity, power of expression and universality. Then, be able to study and analyze more precisely the behavior of parallel applications.

Book Parallel Programming

    Book Details:
  • Author : Thomas Rauber
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-13
  • ISBN : 3642378013
  • Pages : 523 pages

Download or read book Parallel Programming written by Thomas Rauber and published by Springer Science & Business Media. This book was released on 2013-06-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.

Book Is Parallel Programming Hard

Download or read book Is Parallel Programming Hard written by Paul E. McKenney and published by . This book was released on 2015-06-13 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parallel Computation

    Book Details:
  • Author : Selim G. Akl
  • Publisher : Upper Saddle River, N.J. : Prentice Hall
  • Release : 1997
  • ISBN :
  • Pages : 632 pages

Download or read book Parallel Computation written by Selim G. Akl and published by Upper Saddle River, N.J. : Prentice Hall. This book was released on 1997 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Programming Massively Parallel Processors

Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Book Job Scheduling Strategies for Parallel Processing

Download or read book Job Scheduling Strategies for Parallel Processing written by Dror G. Feitelson and published by Springer Science & Business Media. This book was released on 1999-10-13 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-workshop proceedings of the 5th International Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP'99, held in San Juan, Puerto Rico, in April 1999, as a satelite meeting of IPPS/SPDP'99. The 12 revised full papers have been through an iterated reviewing process and present the state of the art in the area.

Book Parallel Computing Works

Download or read book Parallel Computing Works written by Geoffrey C. Fox and published by Elsevier. This book was released on 2014-06-28 with total page 977 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear illustration of how parallel computers can be successfully applied to large-scale scientific computations. This book demonstrates how a variety of applications in physics, biology, mathematics and other sciences were implemented on real parallel computers to produce new scientific results. It investigates issues of fine-grained parallelism relevant for future supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configure different massively parallel machines, design and implement basic system software, and develop algorithms for frequently used mathematical computations. They also devise performance models, measure the performance characteristics of several computers, and create a high-performance computing facility based exclusively on parallel computers. By addressing all issues involved in scientific problem solving, Parallel Computing Works! provides valuable insight into computational science for large-scale parallel architectures. For those in the sciences, the findings reveal the usefulness of an important experimental tool. Anyone in supercomputing and related computational fields will gain a new perspective on the potential contributions of parallelism. Includes over 30 full-color illustrations.

Book Introduction to Parallel Programming

Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.

Book The SIMD Model of Parallel Computation

Download or read book The SIMD Model of Parallel Computation written by Robert Cypher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1.1 Background There are many paradigmatic statements in the literature claiming that this is the decade of parallel computation. A great deal of research is being de voted to developing architectures and algorithms for parallel machines with thousands, or even millions, of processors. Such massively parallel computers have been made feasible by advances in VLSI (very large scale integration) technology. In fact, a number of computers having over one thousand pro cessors are commercially available. Furthermore, it is reasonable to expect that as VLSI technology continues to improve, massively parallel computers will become increasingly affordable and common. However, despite the significant progress made in the field, many funda mental issues still remain unresolved. One of the most significant of these is the issue of a general purpose parallel architecture. There is currently a huge variety of parallel architectures that are either being built or proposed. The problem is whether a single parallel computer can perform efficiently on all computing applications.

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Book Parallel Computer Organization and Design

Download or read book Parallel Computer Organization and Design written by Michel Dubois and published by Cambridge University Press. This book was released on 2012-08-30 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A design-oriented text for advanced computer architecture courses, covering parallelism, complexity, power, reliability and performance.

Book Parallel Computations

Download or read book Parallel Computations written by Garry Rodrigue and published by Elsevier. This book was released on 2014-05-10 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel Computations focuses on parallel computation, with emphasis on algorithms used in a variety of numerical and physical applications and for many different types of parallel computers. Topics covered range from vectorization of fast Fourier transforms (FFTs) and of the incomplete Cholesky conjugate gradient (ICCG) algorithm on the Cray-1 to calculation of table lookups and piecewise functions. Single tridiagonal linear systems and vectorized computation of reactive flow are also discussed. Comprised of 13 chapters, this volume begins by classifying parallel computers and describing techniques for performing matrix operations on them. The reader is then introduced to FFTs and the tridiagonal linear system as well as the ICCG method. Different versions of the conjugate gradient method for solving the time-dependent diffusion equation are considered. Subsequent chapters deal with two- and three-dimensional fluid flow calculations, paying particular attention to the principal issues in designing efficient numerical methods for hydrodynamic calculations; the decisions that a numerical modeler must make to optimize chemically reactive flow simulations; and how to handle disk-to-core data transfer and storage allocation for the solution of the implicit equations for three-dimensional flows. The book also describes the time-split finite difference scheme for solving the two-dimensional Navier-Stokes equation for flows through slotted nozzles. Finally, the large-scale stimulation of plasmas, as carried out on a small computer with an array processor, is discussed. This monograph should be of interest to specialists in computer science.