EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Convergence of Stochastic Processes

Download or read book Convergence of Stochastic Processes written by D. Pollard and published by David Pollard. This book was released on 1984-10-08 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.

Book Weak Convergence of Stochastic Processes

Download or read book Weak Convergence of Stochastic Processes written by Vidyadhar Mandrekar and published by de Gruyter. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to present results on the subject of weak convergence to study invariance principles in statistical applications. Different techniques, formerly only available in a broad range of literature, are for the first time presen

Book Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems

Download or read book Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems written by Harold Kushner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with several closely related topics concerning approxima tions and perturbations of random processes and their applications to some important and fascinating classes of problems in the analysis and design of stochastic control systems and nonlinear filters. The basic mathematical methods which are used and developed are those of the theory of weak con vergence. The techniques are quite powerful for getting weak convergence or functional limit theorems for broad classes of problems and many of the techniques are new. The original need for some of the techniques which are developed here arose in connection with our study of the particular applica tions in this book, and related problems of approximation in control theory, but it will be clear that they have numerous applications elsewhere in weak convergence and process approximation theory. The book is a continuation of the author's long term interest in problems of the approximation of stochastic processes and its applications to problems arising in control and communication theory and related areas. In fact, the techniques used here can be fruitfully applied to many other areas. The basic random processes of interest can be described by solutions to either (multiple time scale) Ito differential equations driven by wide band or state dependent wide band noise or which are singularly perturbed. They might be controlled or not, and their state values might be fully observable or not (e. g. , as in the nonlinear filtering problem).

Book Stochastic Convergence

Download or read book Stochastic Convergence written by Eugene Lukacs and published by Academic Press. This book was released on 2014-07-03 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Convergence, Second Edition covers the theoretical aspects of random power series dealing with convergence problems. This edition contains eight chapters and starts with an introduction to the basic concepts of stochastic convergence. The succeeding chapters deal with infinite sequences of random variables and their convergences, as well as the consideration of certain sets of random variables as a space. These topics are followed by discussions of the infinite series of random variables, specifically the lemmas of Borel-Cantelli and the zero-one laws. Other chapters evaluate the power series whose coefficients are random variables, the stochastic integrals and derivatives, and the characteristics of the normal distribution of infinite sums of random variables. The last chapter discusses the characterization of the Wiener process and of stable processes. This book will prove useful to mathematicians and advance mathematics students.

Book Stochastic Process Limits

Download or read book Stochastic Process Limits written by Ward Whitt and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews

Book Limit Theorems for Stochastic Processes

Download or read book Limit Theorems for Stochastic Processes written by Jean Jacod and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an elementary introduction to the main topics: theory of martingales and stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students.

Book Empirical Processes with Applications to Statistics

Download or read book Empirical Processes with Applications to Statistics written by Galen R. Shorack and published by SIAM. This book was released on 2009-01-01 with total page 992 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1986, this valuable reference provides a detailed treatment of limit theorems and inequalities for empirical processes of real-valued random variables; applications of the theory to censored data, spacings, rank statistics, quantiles, and many functionals of empirical processes, including a treatment of bootstrap methods; and a summary of inequalities that are useful for proving limit theorems. At the end of the Errata section, the authors have supplied references to solutions for 11 of the 19 Open Questions provided in the book's original edition. Audience: researchers in statistical theory, probability theory, biostatistics, econometrics, and computer science.

Book Convergence of Stochastic Processes

Download or read book Convergence of Stochastic Processes written by D. Pollard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: A more accurate title for this book might be: An Exposition of Selected Parts of Empirical Process Theory, With Related Interesting Facts About Weak Convergence, and Applications to Mathematical Statistics. The high points are Chapters II and VII, which describe some of the developments inspired by Richard Dudley's 1978 paper. There I explain the combinatorial ideas and approximation methods that are needed to prove maximal inequalities for empirical processes indexed by classes of sets or classes of functions. The material is somewhat arbitrarily divided into results used to prove consistency theorems and results used to prove central limit theorems. This has allowed me to put the easier material in Chapter II, with the hope of enticing the casual reader to delve deeper. Chapters III through VI deal with more classical material, as seen from a different perspective. The novelties are: convergence for measures that don't live on borel a-fields; the joys of working with the uniform metric on D[O, IJ; and finite-dimensional approximation as the unifying idea behind weak convergence. Uniform tightness reappears in disguise as a condition that justifies the finite-dimensional approximation. Only later is it exploited as a method for proving the existence of limit distributions. The last chapter has a heuristic flavor. I didn't want to confuse the martingale issues with the martingale facts.

Book Weak Convergence of Financial Markets

Download or read book Weak Convergence of Financial Markets written by Jean-Luc Prigent and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of weak convergence of stochastic processes and its application to the study of financial markets. Split into three parts, the first recalls the mathematics of stochastic processes and stochastic calculus with special emphasis on contiguity properties and weak convergence of stochastic integrals. The second part is devoted to the analysis of financial theory from the convergence point of view. The main problems, which include portfolio optimization, option pricing and hedging are examined, especially when considering discrete-time approximations of continuous-time dynamics. The third part deals with lattice- and tree-based computational procedures for option pricing both on stocks and stochastic bonds. More general discrete approximations are also introduced and detailed. Includes detailed examples.

Book Stochastic Processes and Applications

Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Book A First Look At Stochastic Processes

Download or read book A First Look At Stochastic Processes written by Jeffrey S Rosenthal and published by World Scientific. This book was released on 2019-09-26 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the theory of stochastic processes, that is, randomness which proceeds in time. Using concrete examples like repeated gambling and jumping frogs, it presents fundamental mathematical results through simple, clear, logical theorems and examples. It covers in detail such essential material as Markov chain recurrence criteria, the Markov chain convergence theorem, and optional stopping theorems for martingales. The final chapter provides a brief introduction to Brownian motion, Markov processes in continuous time and space, Poisson processes, and renewal theory.Interspersed throughout are applications to such topics as gambler's ruin probabilities, random walks on graphs, sequence waiting times, branching processes, stock option pricing, and Markov Chain Monte Carlo (MCMC) algorithms.The focus is always on making the theory as well-motivated and accessible as possible, to allow students and readers to learn this fascinating subject as easily and painlessly as possible.

Book A Weak Convergence Approach to the Theory of Large Deviations

Download or read book A Weak Convergence Approach to the Theory of Large Deviations written by Paul Dupuis and published by John Wiley & Sons. This book was released on 2011-09-09 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness anddifficulty. This innovative text demonstrates how to employ thewell-established linear techniques of weak convergence theory toprove large deviation results. Beginning with a step-by-stepdevelopment of the approach, the book skillfully guides readersthrough models of increasing complexity covering a wide variety ofrandom variable-level and process-level problems. Representationformulas for large deviation-type expectations are a key tool andare developed systematically for discrete-time problems. Accessible to anyone who has a knowledge of measure theory andmeasure-theoretic probability, A Weak Convergence Approach to theTheory of Large Deviations is important reading for both studentsand researchers.

Book Limit Theorems for Randomly Stopped Stochastic Processes

Download or read book Limit Theorems for Randomly Stopped Stochastic Processes written by Dmitrii S. Silvestrov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first to present a state-of-the-art overview of this field, with many results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast and technically demanding Russian literature in detail. Its coverage is thorough, streamlined and arranged according to difficulty.

Book Introduction to Empirical Processes and Semiparametric Inference

Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Book Markov Processes

    Book Details:
  • Author : Stewart N. Ethier
  • Publisher : John Wiley & Sons
  • Release : 2009-09-25
  • ISBN : 0470317329
  • Pages : 528 pages

Download or read book Markov Processes written by Stewart N. Ethier and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference." -American Scientist "There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings." -Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts "Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook." -Journal of Statistical Physics Markov Processes presents several different approaches to proving weak approximation theorems for Markov processes, emphasizing the interplay of methods of characterization and approximation. Martingale problems for general Markov processes are systematically developed for the first time in book form. Useful to the professional as a reference and suitable for the graduate student as a text, this volume features a table of the interdependencies among the theorems, an extensive bibliography, and end-of-chapter problems.

Book Essentials of Stochastic Processes

Download or read book Essentials of Stochastic Processes written by Richard Durrett and published by Springer. This book was released on 2016-11-07 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.

Book Large Deviations for Stochastic Processes

Download or read book Large Deviations for Stochastic Processes written by Jin Feng and published by American Mathematical Soc.. This book was released on 2006 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are de