EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Control of a Shock Wave boundary Layer Interaction Using Localized Arc Filament Plasma Actuators

Download or read book Control of a Shock Wave boundary Layer Interaction Using Localized Arc Filament Plasma Actuators written by Nathan Joseph Webb and published by . This book was released on 2013 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions.

Book Control of the Interaction Between an Oblique Shock Wave and a Supersonic Turbulent Boundary Layer by Localized Arc Filament Plasma Actuators

Download or read book Control of the Interaction Between an Oblique Shock Wave and a Supersonic Turbulent Boundary Layer by Localized Arc Filament Plasma Actuators written by Nathan J. Webb and published by . This book was released on 2009 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: The ability of localized arc filament plasma actuators to eliminate or reduce the extent of boundary layer separation in the interaction between an oblique shock wave and a turbulent boundary layer is examined. This is an important phenomenon occurring in many applications including supersonic aircraft engine inlets. The effects of the actuators on the flow were studied for varying frequency, location, and mode of actuation of the actuators. The effectiveness of the forcing was determined by using schlieren imaging techniques, particle image velocimetry, and unsteady pressure measurements. The data collected shows that the actuators do have significant effects on the flow and can effectively remove the separation caused by the shock wave/boundary layer interaction.

Book Control of Supersonic Mixed compression Inlets Using Localized Arc Filament Plasma Actuators

Download or read book Control of Supersonic Mixed compression Inlets Using Localized Arc Filament Plasma Actuators written by Nathan Joseph Webb and published by . This book was released on 2010 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Shock wave/boundary layer interactions (SWBLIs) occur in many supersonic internal flow applications, specifically in mixed compression inlets, as well as in external flows. In this study a nominally Mach 2 mixed compression inlet is modeled by two experimental setups: 1) A compression ramp-generated impinging SWBLI, and 2) a variable angle wedge (VAW) generated impinging SWBLI. The compression ramp and the wedge both serve to generate an oblique shock wave that impinges on the boundary layer on the opposite surface of the wind tunnel. This produces an impinging SWBLI within the test section that replicates the flow found in a mixed compression inlet. A SWBLI can cause flow separation and it is desirable to efficiently prevent this to avoid the many adverse consequences that may result otherwise. The goal of this study is to investigate the ability of localized arc-filament plasma actuators (LAFPAs) to effectively control the interaction. The LAFPAs show significant ability to beneficially affect the SWBLI depending on various operating parameters such as geometry and forcing Strouhal number. This ability apparently stems from a manipulation of instabilities naturally present in the flow. For the compression ramp facility the LAFPAs were most effective when located upstream of the shock foot, forcing with a Strouhal number of 0.03, and operated in-phase. The VAW facility is currently being debugged and will be used for future detailed experiments investigating the control authority of the LAFPAs.

Book Design and Characterization of a Supersonic Wind Tunnel for the Study of Shock Wave Boundary Layer Interactions

Download or read book Design and Characterization of a Supersonic Wind Tunnel for the Study of Shock Wave Boundary Layer Interactions written by Christopher J. Clifford and published by . This book was released on 2010 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: A new 3"x3" supersonic wind tunnel was built to facilitate the continued development of localized arc filament plasma actuators (LAFPAs) as a control method for supersonic mixed compression inlets. A variable angle wedge was employed as the compression surface to generate a variable strength shock wave boundary layer interaction (SWBLI). The resulting flow is Mach 2.33 with a Reynolds number based on boundary layer momentum thickness of 23,000. Several qualitative techniques were used to observe certain aspects of the flow and interaction. Schlieren imaging was used during the troubleshooting phase to identify extraneous shock waves and expansion waves and revealed an unwanted separation region on the ceiling. Oil flow visualization on the interaction surface highlights the three-dimensionality of the separation region, but also confirms a two-dimensional assumption near the centerline of the tunnel. The separation region was found to extend 20 mm in the streamwise direction. Particle image velocimetry (PIV) was used to gather quantitative flow field information about the freestream and boundary layer. The incoming boundary layer, measuring 4.62 mm in thickness, will be analyzed in further detail.

Book Encyclopedia of Plasma Technology   Two Volume Set

Download or read book Encyclopedia of Plasma Technology Two Volume Set written by J. Leon Shohet and published by CRC Press. This book was released on 2016-12-12 with total page 1654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Book Theoretical and Experimental Aerodynamics

Download or read book Theoretical and Experimental Aerodynamics written by Mrinal Kaushik and published by Springer. This book was released on 2018-12-15 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as a text for undergraduate and graduate courses in aerodynamics, typically offered to students of aerospace and mechanical engineering programs. It covers all aspects of aerodynamics. The book begins with a description of the standard atmosphere and basic concepts, then moves on to cover the equations and mathematical models used to describe and characterize flow fields, as well as their thermodynamic aspects and applications. Specific emphasis is placed on the relation between concepts and their use in aircraft design. Additional topics of interest to the reader are presented in the Appendix, which draws on the teachings provided in the text. The book is written in an easy to understand manner, with pedagogical aids such as chapter overviews, summaries, and descriptive and objective questions to help students evaluate their progress. Atmospheric and gas tables are provided to facilitate problem solving. Lastly, a detailed bibliography is included at the end of each chapter to provide students with further resources. The book can also be used as a text for professional development courses in aerodynamics.

Book Advanced UAV Aerodynamics  Flight Stability and Control

Download or read book Advanced UAV Aerodynamics Flight Stability and Control written by Pascual Marqués and published by John Wiley & Sons. This book was released on 2017-07-11 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.

Book Scalability of Localized Arc Filament Plasma Actuators

Download or read book Scalability of Localized Arc Filament Plasma Actuators written by Clifford A. Brown and published by BiblioGov. This book was released on 2013-07 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

Book Shock Wave Boundary Layer Interactions

Download or read book Shock Wave Boundary Layer Interactions written by Holger Babinsky and published by Cambridge University Press. This book was released on 2011-09-12 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Book Development of Localized Arc Filament RF Plasma Actuators for High Speed and High Reynolds Number Flow Control

Download or read book Development of Localized Arc Filament RF Plasma Actuators for High Speed and High Reynolds Number Flow Control written by and published by . This book was released on 2010 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently developed Localized Arc Filament Plasma Actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54 cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Farfield acoustic measurements demonstrated similar trends in the Overall Sound Pressure Level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2- 1.5 dB in both cases.

Book Noise Mitigation of a Jet Using Localized Arc Filament Plasma Actuators

Download or read book Noise Mitigation of a Jet Using Localized Arc Filament Plasma Actuators written by Casey B. Hahn and published by . This book was released on 2010 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Localized arc filament plasma actuators (LAFPAs) are used at The Gas Dynamics and Turbulence Laboratory (GDTL) for the purpose of controlling the downstream development of a 1-inch exit diameter jet. The lab has the capability to study both subsonic and supersonic jets with a primary goal being the mitigation of noise emitted by a jet. However, the mechanism by which the actuators are capable of perturbing the instabilities of the jet is unclear. It has been proposed that the ring groove, initially added to shield the plasma arcs from the high-speed jet flow, of the nozzle extension that houses the actuators is crucial for effective actuation. To study this possibility a new nozzle extension, which relocates the electrodes to the nozzle extension face and deletes the ring groove, is used. A comparison of the acoustic results of a traditional extension with a ring groove and the new nozzle extension without the ring groove is used to determine the effect of the ring groove. The results show that the same general trends and levels of noise attenuation and amplification are achieved with either extension. Thus, it is concluded that the ring groove is not essential for effective actuation.

Book Fundamental Physics and Application of Plasma Actuators for High speed Flows

Download or read book Fundamental Physics and Application of Plasma Actuators for High speed Flows written by Eli S. Lazar and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, a detailed investigation is given discussing three plasma-based flow control methods. These methods included plasma generated by laser energy, microwaves, and electric arc. The plasma generated by laser energy was also applied to a sonic transverse jet in a supersonic cross flow. Lastly, the particle image velocimetry diagnostic was considered and a technique developed to evaluate measurement uncertainty and using experimental velocity data to solve for density from the continuity equation. In the laser-spark system, the effect of ambient pressure in the range of 0.1 to 1.0 atm and wavelength (266 nm and 532 nm) on the size, temperature, electron number density, and fraction of laser energy absorbed in a laser-induced plasma in air has been conducted. The plasma was generated by using optics to focus the laser energy. The focused laser pulse resulted in the induced optical breakdown of air, creating a plasma to perturb the flow field. As pressure or wavelength are reduced, the size of the plasma, its electron number density, and the fraction of incident laser energy that is absorbed are all found to decrease significantly. For the plasma generated by microwaves, the feasibility of using the system for flow control was demonstrated at pressures ranging from 0.05 atm to 1 atm and for pulsing frequencies between 400 Hz to 10 kHz. The setup was based on a quarter-wave coaxial resonator being operated with a microwave frequency of 2.45 GHz. Analysis of reflected power measurements suggested that the microwave energy could be best coupled into the resonator by using a small inductive loop, where the geometry can be experimentally optimized. The plasma was first characterized by recording images of the emission and taking temporal emission waveform profiles. Tests were conducted in quiescent air and analyzed with schlieren photography to determine the effectiveness of a plasma pulse to produce an instantaneous flow perturbation. Examination of phase averaged schlieren images revealed that a blast was produced by the emission and could be used to alter a flow field. The emission was also thermally characterized through emission spectroscopy measurements where the vibrational and rotational temperatures of the plasma were determined. The last system considered was a localized arc filament plasma actuator, or LAFPA-type device. The system creates electric arcs by generating electric fields in the range of 20 kV/cm between two pin-type electrodes. The potential of the actuator to influence surrounding quiescent flow was investigated using emission imaging, schlieren imaging, current and voltage probes, particle image velocimetry (PIV), and emission spectroscopy. The schlieren imaging revealed a potential to cause blast 0́−Mach0́+ waves and a synthetic jet with controllable directionality dependent on cavity orientation. The electric measurements revealed that, in order to increase the power discharged by the plasma, the electrode separation will only aid mildly and that an optimum plasma current exists (between 300-400 mA for the tested parameter space). The PIV data were acquired for various actuation frequencies and showed a trend between discharge frequency and maximum induced jet velocity. Finally, the emission spectroscopy data were acquired for four different cases: two electrode separations and two plasma currents. For each of the four conditions tested, the spectrum fit very well to a thermal distribution for early times in the emission. However, at later times in the emission, the spectrum no longer matched that of the second positive system under optically thick conditions for any combination of rotational and vibrational temperatures. Using the plasma generated by laser energy, an experimental investigation of flow control on a sonic underexpanded jet injected normally into a Mach 2.45 crossflow is reported. The jet exit geometry was circular and was operated at a jet-to-crossflow momentum flux ratio of 1.7. The unperturbed flow field was analyzed with schlieren imaging, PIV velocity data, surface oil flow visualizations, and pressure sensitive paint measurements. As a means of excitation to the flow field, the plasma energy was focused in the center of the jet exit at three different vertical locations. The perturbed resulting flow field was analyzed with schlieren photography and particle image velocimetry. Analysis of phase averaged schlieren images suggested that the resulting blast wave from the laser pulse disrupted the structure of the barrel shock and Mach disk. The two-component velocity field data revealed that the excitation pulse also caused a perturbation to the jet shear layer and induced the formation of vortices that convect downstream. Finally, additional techniques were developed for the PIV diagnostics. First, while PIV is an established experimental technique for determining a velocity field, quantifying the uncertainty related with this method remains a challenging task. To this end, four sources of uncertainty are assessed: equipment, particle lag, sampling size, and processing algorithm. An example uncertainty analysis is conducted for a transverse sonic jet injected into a supersonic crossflow. However, the analysis is not specific to the example flow field and may be generally applied to any mean velocity field. Secondly, using the velocity data from PIV, a technique was developed to solve for density from the continuity equation over the entire flow field. The technique is validated using data from CFD simulations and demonstrated for experimental data for two flow fields.

Book Control of Mean Separation in a Compression Ramp Shock Boundary Layer Interaction Using Pulsed Plasma Jets

Download or read book Control of Mean Separation in a Compression Ramp Shock Boundary Layer Interaction Using Pulsed Plasma Jets written by Benton Robb Greene and published by . This book was released on 2014 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pulsed plasma jets (also called "SparkJets'") were investigated for use in controlling the mean separation location induced by shock wave-boundary layer interaction. These synthetic jet actuators are driven by electro-thermal heating from an electrical discharge in a small cavity, which forces the gas in the cavity to exit through a small hole as a high-speed jet. With this method of actuation, pulsed plasma jets can achieve pulsing frequencies on the order of kilohertz, which is on the order of the instability frequency of many lab-scale shock wave-boundary layer interactions (SWBLI). The interaction under investigation was generated by a 20° compression ramp in a Mach 3 flow. The undisturbed boundary layer is transitional with Re[subscript theta] of 5400. Surface oil streak visualization is used in a parametric study to determine the optimum pulsing frequency of the jet, the optimum distance of the jet from the compression corner, and the optimum injection angle of the jets. Three spanwise-oriented arrays of three plasma jets are tested, each with a different pitch and skew angle on the jet exit port. The three injection angles tested were 22° pitch and 45° skew, 20° pitch and 0° skew, and 45° pitch and 0° skew. Jet pulsing frequency is varied between 2 kHz and 4 kHz, corresponding to a Strouhal number based on separation length of 0.012 and 0.023. Particle image velocimetry is used to characterize the effect that the actuators have on the reattached boundary layer profile on the ramp surface. Results show that plasma jets pitched at 20° from the wall, and pulsed at a Strouhal number of 0.018, can reduce the size of an approximate measure of the separation region by up to 40% and increase the integrated momentum in the downstream reattached boundary layer, albeit with a concomitant increase in the shape factor.

Book Turbulent Boundary layer Control with DBD Plasma Actuators Using Spanwise Travelling wave Technique

Download or read book Turbulent Boundary layer Control with DBD Plasma Actuators Using Spanwise Travelling wave Technique written by Richard David Whalley and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent boundary-layer control has been investigated experimentally using a low-speed wind tunnel at the University of Nottingham, with an overall aim of achieving skin-friction drag reduction. The important part of this investigation is to understand the mechanism of drag reduction and the associated changes in the structure of the turbulent boundary layer. It was demonstrated with Direct Numerical Simulations (DNSs) nearly a decade ago that by applying a spanwise travelling wave in the near-wall region of a turbulent wall flow can lead to a skin-friction drag reduction on the order of 30%. To date, spanwise travelling waves are predominantly created by a Lorentz force, limiting the study of this technique to water flows and numerical investigations. As an aeronautical application of this innovative flow control technique, an investigation into the use of Dielectric-Barrier-Discharge (DBD) plasma actuators to generate spanwise travelling waves in air has been conducted. DBD plasma actuators have received enormous interest over the past ten years within the flow control community due to their unique properties. DBD plasma actuators are completely electrical and ionize the nearby air to couple momentum to the surrounding flow. Hence, DBD plasma actuators require no moving parts, which makes their design simple and without the need for complicated ducting, holes or cavities. They are fast acting, of low power, low in weight, cheap to manufacture and can be fitted to existing airframes. As the body force that the DBD plasma actuator creates is at the wall, DBD plasma actuators are an ideal candidate for wall-based flow control techniques such as the spanwise travelling wave-technique. In this study, DBD plasma actuators have been found to have the ability to greatly modify the near-wall region of the turbulent boundary layer with a potential to reduce skin-friction drag. The near-wall structures modified by the spanwise travelling waves were studied using the PIV technique, while the associated turbulence statistics were carefully documented using hot-wire anemometry. On initiation of DBD plasma in the turbulent boundary layer, streamwise vortices were generated. Spreading of low-speed fluid by the streamwise vortices that were travelling in the spanwise direction was observed, which seems to have greatly attenuated the turbulence production process. This is very much in line with the finding of DNS studies, where wide low-speed ribbons replaced the low-speed streaks.

Book Control of Shock wave boundary Layer Interactions with Passive Blowing and Bleeding

Download or read book Control of Shock wave boundary Layer Interactions with Passive Blowing and Bleeding written by Y.-L. Lin and published by . This book was released on 1997 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control of Shock Wave turbulent Boundary Layer Interactions Using Tangential Injection

Download or read book Control of Shock Wave turbulent Boundary Layer Interactions Using Tangential Injection written by John F. Donovan and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: