EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Control of a Multicylinder Homogeneous Charge Compression Ignition Engine

Download or read book Control of a Multicylinder Homogeneous Charge Compression Ignition Engine written by William Lee Gans and published by . This book was released on 2003 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Closed loop Control of a Multicylinder Homogeneous Charge Compression Ignition Engine Using Fast Thermal Management and Ion Sensors

Download or read book Closed loop Control of a Multicylinder Homogeneous Charge Compression Ignition Engine Using Fast Thermal Management and Ion Sensors written by Parag Mehresh and published by . This book was released on 2005 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cost  Effectiveness  and Deployment of Fuel Economy Technologies for Light Duty Vehicles

Download or read book Cost Effectiveness and Deployment of Fuel Economy Technologies for Light Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Book Inflation   Kaufkraft   Wechselkurs

Download or read book Inflation Kaufkraft Wechselkurs written by and published by . This book was released on 1986 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Maximizing Power Output in Homogeneous Charge Compression Ignition  HCCI  Engines and Enabling Effective Control of Combustion Timing

Download or read book Maximizing Power Output in Homogeneous Charge Compression Ignition HCCI Engines and Enabling Effective Control of Combustion Timing written by Samveg Saxena and published by . This book was released on 2011 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: 1) ringing limits, 2) peak in-cylinder pressure limits, 3) misfire limits, 4) low intake temperature limits, and 5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: 1) high intake air pressures allowing improved power output, 2) highly delayed combustion timing to avoid ringing limits, and 3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs are proposed for sensing combustion timing. Ion sensing, however, is unreliable under certain HCCI conditions. The dissertation presents two strategies for improving the usefulness of ion sensors in HCCI engines: 1) the use of tiny fractions of metal-acetate fuel additives that expand the useful range of ion sensors, and 2) the use of ion sensors for detecting excessive ringing that must be avoided in HCCI engines. These two innovative research efforts make ion sensors viable for sensing combustion characteristics across the full range of HCCI operation, making them effective for use in engine control systems. In summary, this Ph. D dissertation addresses two important technical challenges facing HCCI engines: power output limits, and difficulty in sensing combustion characteristics for control applications. The strategies proposed in this dissertation research bring HCCI engines closer to widespread commercialization allowing vehicles to operate with significantly higher efficiency and with cleaner emissions.

Book Study of homogeneous charge compression ignition  HCCI  combustion and emission characteristics in a multi cylinder engine

Download or read book Study of homogeneous charge compression ignition HCCI combustion and emission characteristics in a multi cylinder engine written by Jacek Waldemar Misztal and published by . This book was released on 2008 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Control and Robustness Analysis of Homogeneous Charge Compression Ignition Using Exhaust Recompression

Download or read book Control and Robustness Analysis of Homogeneous Charge Compression Ignition Using Exhaust Recompression written by Hsien-Hsin Liao and published by Stanford University. This book was released on 2011 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been an enormous global research effort to alleviate the current and projected environmental consequences incurred by internal combustion (IC) engines, the dominant propulsion systems in ground vehicles. Two technologies have the potential to improve the efficiency and emissions of IC engines in the near future: variable valve actuation (VVA) and homogeneous charge compression ignition (HCCI). IC engines equipped with VVA systems are proven to show better performance by adjusting the valve lift and timing appropriately. An electro-hydraulic valve system (EHVS) is a type of VVA system that possesses full flexibility, i.e., the ability to change the valve lift and timing independently and continuously, making it an ideal rapid prototyping tool in a research environment. Unfortunately, an EHVS typically shows a significant response time delay that limits the achievable closed-loop bandwidth and, as a result, shows poor tracking performance. In this thesis, a control framework that includes system identification, feedback control design, and repetitive control design is presented. The combined control law shows excellent performance with a root-mean-square tracking error below 40 [Mu]m over a maximum valve lift of 4 mm. A stability analysis is also provided to show that the mean tracking error converges to zero asymptotically with the combined control law. HCCI, the other technology presented in this thesis, is a combustion strategy initiated by compressing a homogeneous air-fuel mixture to auto-ignition, therefore, ignition occurs at multiple points inside the cylinder without noticeable flame propagation. The result is rapid combustion with low peak in-cylinder temperature, which gives HCCI improved efficiency and reduces NOx formation. To initiate HCCI with a typical compression ratio, the sensible energy of the mixture needs to be high compared to a spark ignited (SI) strategy. One approach to achieve this, called recompression HCCI, is by closing the exhaust valve early to trap a portion of the exhaust gas in the cylinder. Unlike a SI or Diesel strategy, HCCI lacks an explicit combustion trigger, as autoignition is governed by chemical kinetics. Therefore, the thermo-chemical conditions of the air-fuel mixture need to be carefully controlled for HCCI to occur at the desired timing. Compounding this challenge in recompression HCCI is the re-utilization of the exhaust gas which creates cycle-to-cycle coupling. Furthermore, the coupling characteristics can change drastically around different operating points, making combustion timing control difficult across a wide range of conditions. In this thesis, a graphical analysis examines the in-cylinder temperature dynamics of recompression HCCI and reveals three qualitative types of temperature dynamics. With this insight, a switching linear model is formulated by combining three linear models: one for each of the three types of temperature dynamics. A switching controller that is composed of three local linear feedback controllers can then be designed based on the switching model. This switching model/control formulation is tested on an experimental HCCI testbed and shows good performance in controlling the combustion timing across a wide range. A semi-definite program is formulated to find a Lyapunov function for the switching model/control framework and shows that it is stable. As HCCI is dictated by the in-cylinder thermo-chemical conditions, there are further concerns about the robustness of HCCI, i.e., the boundedness of the thermo-chemical conditions with uncertainty existing in the ambient conditions and in the engine's own characteristics due to aging. To assess HCCI's robustness, this thesis presents a linear parameter varying (LPV) model that captures the dynamics of recompression HCCI and possesses an elegant model structure that is more amenable to analysis. Based on this model, a recursive algorithm using convex optimization is formulated to generate analytical statements about the boundedness of the in-cylinder thermo-chemical conditions. The bounds generated by the algorithm are also shown to relate well to the data from the experimental testbed.

Book Effects of Increased Intake Pressure on Homogeneous Charge Compression Ignition  HCCI  of Gasoline and Ethanol in a Four cylinder Engine

Download or read book Effects of Increased Intake Pressure on Homogeneous Charge Compression Ignition HCCI of Gasoline and Ethanol in a Four cylinder Engine written by Robert Vern Mills and published by . This book was released on 2007 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fuel Effects on Homogeneous Charge Compression Ignition Combustion

Download or read book Fuel Effects on Homogeneous Charge Compression Ignition Combustion written by Jacob Richard Zuehl and published by . This book was released on 2009 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thermal Management and Control of a Homogeneous Charge Compression Ignition  HCCI  Engine

Download or read book Thermal Management and Control of a Homogeneous Charge Compression Ignition HCCI Engine written by George Constandinides and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Controlling And Operating Homogeneous Charge Compression Ignition  Hcci  Engines

Download or read book Controlling And Operating Homogeneous Charge Compression Ignition Hcci Engines written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

Book Control Strategies for Homogeneous Charge Compression Ignition Engines

Download or read book Control Strategies for Homogeneous Charge Compression Ignition Engines written by and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book HCCI and CAI Engines for the Automotive Industry

Download or read book HCCI and CAI Engines for the Automotive Industry written by Hua Zhao and published by CRC Press. This book was released on 2007-09-10 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous charge compression ignition (HCCI)/controlled auto-ignition (CAI) has emerged as one of the most promising engine technologies with the potential to combine fuel efficiency and improved emissions performance, offering reduced nitrous oxides and particulate matter alongside efficiency comparable with modern diesel engines. Despite the considerable advantages, its operational range is rather limited and controlling the combustion (timing of ignition and rate of energy release) is still an area of on-going research. Commercial applications are, however, close to reality. HCCI a.

Book Dynamic Modeling and Transient Control of Homogeneous Charge Compression Ignition Engines

Download or read book Dynamic Modeling and Transient Control of Homogeneous Charge Compression Ignition Engines written by Stelios Karagiorgis and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Control of a Homogeneous Charge Compression Ignition Engine

Download or read book Dynamic Control of a Homogeneous Charge Compression Ignition Engine written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

Book Homogeneous Charge Compression Ignition  HCCI  Engines

Download or read book Homogeneous Charge Compression Ignition HCCI Engines written by Fuquan Zhao and published by SAE International. This book was released on 2003-01-01 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The homogeneous charge, compression-ignition (HCCI) combustion process has the potential to significantly reduce NOx and particulate emissions, while achieving high thermal efficiency and the capability of operating with a wide variety of fuels. This makes the HCCI engine an attractive technology that can ostensibly provide diesel-like fuel efficiency and very low emissions, which may allow emissions compliance to occur without relying on lean aftertreatment systems. A profound increase in the level of research and development of this technology has occurred in the last decade. This book gathers contributions from experts in both industry and academia, providing a basic introduction to the state-of-the-art of HCCI technology, a critical review of current HCCI research and development efforts, and perspective for the future. Chapters cover: Gasoline-Fueled HCCI Engines; Diesel-Fueled HCCI Engines; Alternative Fuels and Fuel Additives for HCCI Engines; HCCI Control and Operating Range Extension; Kinetics of HCCI Combustion; HCCI Engine Modeling Approaches.In addition to the extensive overview of terminology, physical processes, and future needs, each chapter also features select SAE papers (a total of 41 are included in the book), as well as a comprehensive list of references related to the subjects. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues provides a valuable base of information for those interested in learning about this rapidly-progressing technology which has the potential to enhance fuel economy and reduce emissions.