EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing

Download or read book Contributions to the Understanding of Aerosol Microphysics Towards Improving the Assessment of Climate Radiative Forcing written by Kyle William Dawson and published by . This book was released on 2017 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiative Forcing of Climate Change

Download or read book Radiative Forcing of Climate Change written by National Research Council and published by National Academies Press. This book was released on 2005-03-25 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.

Book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change

Download or read book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change written by Panel on Aerosol Radiative Forcing and Climate Change and published by National Academies Press. This book was released on 1996-05-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book recommends the initiation of an "integrated" research program to study the role of aerosols in the predicted global climate change. Current understanding suggest that, even now, aerosols, primarily from anthropogenic sources, may be reducing the rate of warming caused by greenhouse gas emissions. In addition to specific research recommendations, this book forcefully argues for two kinds of research program integration: integration of the individual laboratory, field, and theoretical research activities and an integrated management structure that involves all of the concerned federal agencies.

Book Aerosol Cloud Interactions from Urban  Regional  to Global Scales

Download or read book Aerosol Cloud Interactions from Urban Regional to Global Scales written by Yuan Wang and published by Springer. This book was released on 2015-05-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.

Book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change

Download or read book A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change written by National Research Council and published by National Academies Press. This book was released on 1996-04-17 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book recommends the initiation of an "integrated" research program to study the role of aerosols in the predicted global climate change. Current understanding suggest that, even now, aerosols, primarily from anthropogenic sources, may be reducing the rate of warming caused by greenhouse gas emissions. In addition to specific research recommendations, this book forcefully argues for two kinds of research program integration: integration of the individual laboratory, field, and theoretical research activities and an integrated management structure that involves all of the concerned federal agencies.

Book Final Report for LDRD Project   A New Era of Research in Aerosol

Download or read book Final Report for LDRD Project A New Era of Research in Aerosol written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Observations of global temperature records seem to show less warming than predictions of global warming brought on by increasing concentrations of CO2 and other greenhouse gases. One of the reasonable explanations for this apparent inconsistency is that the increasing concentrations of anthropogenic aerosols may be partially counteracting the effects of greenhouse gases. Aerosols can scatter or absorb the solar radiation, directly change the planetary albedo. Aerosols, unlike CO2, may also have a significant indirect effect by serving as cloud condensation nuclei (CCN). Increases in CCN can result in clouds with more but smaller droplets, enhancing the reflection of solar radiation. Aerosol direct and indirect effects are a strong function of the distributions of all aerosol types and the size distribution of the aerosol in question. However, the large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to assess the magnitude of aerosol effects on atmospheric radiation. These variabilities in aerosol characteristics as well as their effects on clouds are the leading sources of uncertainty in predicting future climate variation. Inventory studies have shown that the present-day anthropogenic emissions contribute more than half of fine particle mass primarily due to sulfate and carbonaceous aerosols derived from fossil fuel combustion and biomass burning. Parts of our earlier studies have been focused on developing an understanding of global sulfate and carbonaceous aerosol abundances and investigating their climate effects [Chuang et al., 1997; Penner et al., 1998]. We have also modeled aerosol optical properties to account for changes in the refractive indices with relative humidity and dry aerosol composition [Grant et al., 1999]. Moreover, we have developed parameterizations of cloud response to aerosol abundance for use in global models to evaluate the importance of aerosol/cloud interactions on climate forcing [Chuang and Penner, 1995]. Our research has been recognized as one of a few studies attempting to quantify the effects of anthropogenic aerosols on climate in the IPCC Third Assessment Report [IPCC, 2001]. Our previous assessments of aerosol climate effects were based on a general circulation model (NCAR CCM1) fully coupled to a global tropospheric chemistry model (GRANTOUR). Both models, however, were developed more than a decade ago. The lack of advanced physics representation and techniques in our current models limits us from further exploring the interrelationship between aerosol, cloud, and climate variation. Our objective is to move to a new era of aerosol/cloud/climate modeling at LLNL by coupling the most advanced chemistry and climate models and by incorporating an aerosol microphysics module. This modeling capability will enable us to identify and analyze the responsible processes in aerosol/cloud/climate interactions and therefore, to improve the level of scientific understanding for aerosol climate effects. This state-of-the-art coupled models will also be used to address the relative importance of anthropogenic and natural emissions in the spatial pattern of aerosol climate forcing in order to assess the potential of human induced climate change.

Book Mixed Phase Clouds

    Book Details:
  • Author : Constantin Andronache
  • Publisher : Elsevier
  • Release : 2017-09-28
  • ISBN : 012810550X
  • Pages : 302 pages

Download or read book Mixed Phase Clouds written by Constantin Andronache and published by Elsevier. This book was released on 2017-09-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling

Book The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation

Download or read book The Biogeochemical Impacts of Forests and the Implications for Climate Change Mitigation written by Catherine E. Scott and published by Springer. This book was released on 2014-07-24 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forests and vegetation emit biogenic volatile organic compounds (BVOCs) into the atmosphere which, once oxidized, can partition into the particle phase, forming secondary organic aerosols (SOAs). This thesis reports on a unique and comprehensive analysis of the impact of BVOC emissions on atmospheric aerosols and climate. A state-of-the-art global aerosol microphysics model is used to make the first detailed assessment of the impact of BVOC emissions on aerosol microphysical properties, improving our understanding of the role of these emissions in affecting the Earth’s climate. The thesis also reports on the implications for the climate impact of forests. Accounting for the climate impacts of SOAs, taken together with the carbon cycle and surface albedo effects that have been studied in previous work, increases the total warming effect of global deforestation by roughly 20%.

Book Atmospheric Aerosol Properties and Climate Impacts

Download or read book Atmospheric Aerosol Properties and Climate Impacts written by Mian Chin and published by DIANE Publishing. This book was released on 2009-05 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Synthesis and Assessment Product (SAP) critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. The objectives of this report are: (1) to promote a consensus about the knowledge base for climate change decision support; and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols. Illustrations.

Book Atmospheric Aerosol Properties and Climate Impacts

Download or read book Atmospheric Aerosol Properties and Climate Impacts written by and published by . This book was released on 2009 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Climate Intervention

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2015-06-23
  • ISBN : 0309314852
  • Pages : 276 pages

Download or read book Climate Intervention written by National Research Council and published by National Academies Press. This book was released on 2015-06-23 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing problem of changing environmental conditions caused by climate destabilization is well recognized as one of the defining issues of our time. The root problem is greenhouse gas emissions, and the fundamental solution is curbing those emissions. Climate geoengineering has often been considered to be a "last-ditch" response to climate change, to be used only if climate change damage should produce extreme hardship. Although the likelihood of eventually needing to resort to these efforts grows with every year of inaction on emissions control, there is a lack of information on these ways of potentially intervening in the climate system. As one of a two-book report, this volume of Climate Intervention discusses albedo modification - changing the fraction of incoming solar radiation that reaches the surface. This approach would deliberately modify the energy budget of Earth to produce a cooling designed to compensate for some of the effects of warming associated with greenhouse gas increases. The prospect of large-scale albedo modification raises political and governance issues at national and global levels, as well as ethical concerns. Climate Intervention: Reflecting Sunlight to Cool Earth discusses some of the social, political, and legal issues surrounding these proposed techniques. It is far easier to modify Earth's albedo than to determine whether it should be done or what the consequences might be of such an action. One serious concern is that such an action could be unilaterally undertaken by a small nation or smaller entity for its own benefit without international sanction and regardless of international consequences. Transparency in discussing this subject is critical. In the spirit of that transparency, Climate Intervention: Reflecting Sunlight to Cool Earth was based on peer-reviewed literature and the judgments of the authoring committee; no new research was done as part of this study and all data and information used are from entirely open sources. By helping to bring light to this topic area, this book will help leaders to be far more knowledgeable about the consequences of albedo modification approaches before they face a decision whether or not to use them.

Book Investigation of Aerosol Sources  Lifetime and Radiative Forcing Through Multi Instrument Data Assimilation

Download or read book Investigation of Aerosol Sources Lifetime and Radiative Forcing Through Multi Instrument Data Assimilation written by Juli Irene Rubin and published by . This book was released on 2012 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global-scale atmospheric models play an important role in predicting atmospheric aerosol and the corresponding radiative forcing. Although atmospheric models are important tools, there is large uncertainty associated with aerosol predictions due to uncertainty in aerosol representation within the models. As a result, aerosols and their influence on the Earth's energy balance are considered one of the largest uncertainties in understanding climate change. Given the importance of simulating aerosol for understanding global climate change, it is evident that alternative methods are needed to reduce the effect of the uncertainties associated with aerosol representation and enhance the fidelity of the aerosol models. The goal of this research is to produce aerosol fields with reduced uncertainty by constraining model predictions with observations, using a technique known as data assimilation. The results from the aerosol assimilation are used to investigate aerosol sources, lifetime, and shortwave radiative forcing. Two new aerosol data assimilations are presented as part of this work with both assimilations making use of an Ensemble Kalman Filter (EnKF) and the National Center for Atmospheric Research's (NCAR) community atmosphere model (CAM) with 60 ensemble members. The first assimilation involves the joint adjustment of the amount of atmospheric aerosol and the relative amount of fine and coarse aerosol using observations of aerosol optical depth (AOD) and angstrom exponent from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). Both the amount and relative contribution of fine and coarse aerosol were identified as key parameters for determining aerosol radiative forcing and, therefore, accurately determining these parameters is desirable. The second assimilation presented as part of this work is similar to the first with the addition of a vertical redistribution of coarse aerosol using vertical extinction observations from NASA's Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. Studies have shown that the atmospheric lifetime of aerosol is tightly coupled to the vertical profile, therefore, it is expected that vertical adjustments will further reduce aerosol uncertainty, especially in coarse aerosol. Similar to aerosol amount and size, lifetime is important for properly quantifying radiative forcing as it determines the time an aerosol has to impact the climate and influences the horizontal distribution of aerosol that is highly heterogenous in space and time. The two presented assimilations are run for the year 2007 and results are compared against a control run simulation as well observations of AOD, angstrom exponent, and fine aerosol contributions from MODIS and NASA's Aerosol Robotic Network (AERONET). Through the comparison, it is demonstrated that the presented assimilations are able to reduce the model bias with an increase in the predicted aerosol optical depth. The globally averaged control run AOD prediction for 2007 is 0.086(± 0.06). The globally average AOD predictions for the amount and size assimilation and vertical assimilation are 0.115(± 0.05), 0.140(± 0.05), respectively. This is compared to globally averaged MODIS observations of 0.161(± 0.09). Over-ocean averaged angstrom exponent predictions from the control run are 0.65(± 0.35) while the size and amount and vertical assimilation predictions are 0.68 (± 0.15) and 0.66 (± 0.15), respectively. This is compared to globally averaged MODIS observations of 0.65(± 0.30). While it is difficult to determine improvements in angstrom exponent predictions based on the global average, clear reductions in regional biases were observed. Aerosol predictions are also compared to ground-based AERONET observations by site category, including desert dust, biomass burning, rural, industrial pollution, polluted marine, and dirty pollution. While the rural sites have statistically similar averaged AOD values across simulations, improvements are found for the other site categories in the assimilation runs with higher average AOD values and greater temporal variability. In addition to AOD comparison, the predicted amount of AOD due to fine aerosol is compared to AERONET observations by site category. The greatest reduction in bias is observed for polluted marine sites with the assimilation runs predicting a smaller fine aerosol contribution than the control simulation. Size-related observations are concentrated over ocean regions, therefore, the greatest impact of the assimilation with respect to size is expected for marine sites. Additionally, the positive bias in fine aerosol contribution predicted at dusty sites is reduced the most in the vertical assimilation with dust being mostly coarse in size. The adjustments to the vertical profile of coarse aerosol in the vertical assimilation further reduce bias for coarse dominated sites. The results of the assimilation are used to quantify the contribution of anthropogenic aerosol to AOD. Globally averaged, the anthropogenic contribution to AOD is 38.8 percent for the control simulation, 47.6 percent for the amount and size assimilation and 49.5 percent from the vertical assimilation. These results are comparable to previously published anthropogenic AOD percentages which range from 41 to 72 percent (IPCC 2007). Additionally, aerosol loss processes and lifetime are analyzed. The dominant loss processes are condensational growth for nucleation mode aerosol (fine, 1 & mum). The longest aerosol lifetimes are found in the vertical assimilation with most aerosol species showing better comparison to reported AEROCOM lifetimes, except for sulfate. In particular, the lifetimes of coarse mode dust and sea salt increased in the vertical adjustment assimilation, reducing the negative aerosol optical depth bias, especially in dusty regions. The predicted sulfate lifetime is double the reported AEROCOM value and may be the cause of some positive AOD bias regions in the Northern hemisphere predicted in the model runs. The solar direct radiative forcing (DRE) is calculated using the predicted aerosol fields with the DRE including the effects of both anthropogenic and natural aerosol. Uncertainties in DRE for the assimilation runs are determined using the 60 member ensemble spread. Globally averaged DRE values are -1.9 W/m2, -5.2(± 0.51) W/m2, and -7.2(± 0.94) W/m2, for the control, amount and size and vertical assimilation, respectively. The predicted DRE from the amount and size assimilation compares the best to previously published estimates. Additionally, the calculated anthropogenic contribution to AOD is used in conjunction with the DRE estimates to calculate shortwave anthropogenic direct radiative forcing estimates with predicted values of -0.77, -2.3(± 0.64) and -3.2(± 0.7) W/m2 for the control, amount and size assimilation and vertical assimilation, respectively.

Book Aerosols in Atmospheric Chemistry

Download or read book Aerosols in Atmospheric Chemistry written by Yue Zhang and published by American Chemical Society. This book was released on 2022-04-01 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The uncertainties in the aerosol effects on radiative forcing limit our knowledge of climate change, presenting us with an important research challenge. Aerosols in Atmospheric Chemistry introduces basic concepts about the characterization, formation, and impacts of ambient aerosol particles as an introduction to graduate students new to the field. Each chapter also provides an up-to-date synopsis of the latest knowledge of aerosol particles in atmospheric chemistry.

Book Thriving on Our Changing Planet

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2019-01-20
  • ISBN : 0309467578
  • Pages : 717 pages

Download or read book Thriving on Our Changing Planet written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-01-20 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.

Book Implementation of the Missing Aerosol Physics Into LLNL IMPACT

Download or read book Implementation of the Missing Aerosol Physics Into LLNL IMPACT written by and published by . This book was released on 2005 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic characteristics and composition of aerosols. These processes, together with other physical properties (i.e., size, density, and refractive index), determine the atmospheric lifetime of aerosols and their radiative forcing. To better represent physical properties of aerosols, we adapted an aerosol microphysics model that simulates aerosol size distribution. Work toward this goal was done in collaboration with Professor Anthony Wexler of University of California at Davis. Professor Wexler's group has developed sectional models of atmospheric aerosol dynamics that include an arbitrary number of size sections and chemical compounds or compound classes. The model, AIM (Aerosol Inorganic Model), is designed to predict the mass distribution and composition of urban and regional particulate matter (''Sun and Wexler'', 1998a, b). This model is currently incorporated into EPA's Models-3 air quality modeling platform/CMAQ (Community Multiscale Air Quality) to test its performance with previous simulations of CMAQ over the continental US.

Book Chemical Characterization and Source Apportionment of Atmospheric Aerosols in Urban and Rural Regions

Download or read book Chemical Characterization and Source Apportionment of Atmospheric Aerosols in Urban and Rural Regions written by Caroline Parworth and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerosols, or particulate matter (PM), can affect climate through scattering and absorption of radiation and influence the radiative properties, precipitation efficiency, thickness, and lifetime of clouds. Aerosols are one of the greatest sources of uncertainty in climate model predictions of radiative forcing. To fully understand the sources of uncertainty contributing to the radiative properties of aerosols, measurements of PM mass, composition, and size distribution are needed globally and seasonally. To add to the current understanding of the seasonal and temporal variations in aerosol composition and chemistry, this study has focused on the quantification, speciation, and characterization of atmospheric PM in urban and rural regions of the United States (US) for short and long periods of time. In the first two chapters, we focus on 1 month of aerosol and gas-phase measurements taken in Fresno, CA, an urban and agricultural area, during the National Aeronautics and Space Administration's (NASA) field study called DISCOVER-AQ. This air quality measurement supersite included a plethora of highly detailed chemical measurements of aerosols and gases, which were made at the same time as similar aircraft column measurements of aerosols and gases. The goal of DISCOVER-AQ is to improve the interpretation of satellite observations to approximate surface conditions relating to air quality, which can be achieved by making concurrent ground- and aircraft-based measurements of aerosols and gases. We begin in chapter 2 by exploring the urban aerosol and gas-phase dataset from the NASA DISCOVER-AQ study in California. Specifically, we discuss the chemical composition and mass concentration of water-soluble PM2.5 that were measured using a particle-into-liquid sampler with ion chromatography (PILS-IC) in Fresno, California from January 13–February 10, 2013. This data was analyzed for ionic inorganic species, organic acids and amines. Gas-phase species including HNO3 and NH3 were collected with annular denuders and analyzed using ion chromatography. Using the thermodynamic E-AIM model, inorganic particle water mass concentration and pH were calculated for the first time in this area. Organic particle water mass concentration was calculated from [kappa]-Köhler theory. In chapter 3 further analysis of the aerosol- and gas-phase data measured during DISCOVER-AQ was performed to determine the effectiveness of a local residential wood burning curtailment program in improving air quality. Using aerosol speciation and concentration measurements from the 2013 winter DISCOVER-AQ study in Fresno, CA, we investigate the impact of residential wood burning restrictions on fine particulate mass concentration and composition. Key species associated with biomass burning in this region include K+, acetonitrile, black carbon, and biomass burning organic aerosol (BBOA), which represents primary organic aerosol associated with residential wood burning. Reductions in acetonitrile associated with wood burning restrictions even at night were not observed and most likely associated with stagnant conditions during curtailment periods that led to the buildup of this long-lived gas. In chapter 4 we transition to the rural aerosol dataset from the DOE SGP site. We discuss the chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) that were measured with an aerosol chemical speciation monitor (ACSM) at the DOE SGP site from November 2010 through June 2012. Positive matrix factorization (PMF) was performed on the measured organic aerosol (OA) mass spectral matrix using a newly developed rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach captured the dynamic variations of the chemical properties of the OA factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a BBOA factor. Sources of NR-PM1 species at the SGP site were determined from back trajectory analyses. NR-PM1 mass concentration was dominated by organics for the majority of the study with the exception of winter, when NH4N33 increased due to transport of precursor species from surrounding urban and agricultural regions and also due to cooler temperatures. Chapter 5 is a continuation of chapter 4, where we will explore the use of the multilinear engine (ME-2) as a factor analysis technique, which is an algorithm used for solving the bilinear model called positive matrix factorization (PMF). The importance of ME-2 and its potential application on the long-term aerosol chemical speciation monitor (ACSM) data collected from the Department of Energy (DOE) Southern Great Plains (SPG) site will be discussed. ME-2 was performed on 19 months of OA mass spectral data obtained from the ACSM at the SGP site. Evaluation of ME-2 results are presented, followed by comparison of ME-2 factor results with corresponding OACOMP factor results reported in chapter 4. We show that ME-2 can determine a biomass burning organic aerosol (BBOA) factor during periods when OACOMP cannot. (Abstract shortened by ProQuest.)

Book Improving the Radiative Impact of Biomass Burning Aerosols in the Community Earth System Model

Download or read book Improving the Radiative Impact of Biomass Burning Aerosols in the Community Earth System Model written by Hunter Brown and published by . This book was released on 2020 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atmospheric aerosols are one of the largest contributing factors to radiative forcing uncertainty in global climate models. This uncertainty stems from large variation in aerosol lifetime, composition, emission, and size, all of which affect model estimations of aerosol interactions with incoming solar radiation and clouds. This work presents a detailed investigation of biomass burning (BB) aerosol, and explores how changes in composition, size, and mixing state affect the climate impact of BB in the atmosphere and on snow. The first section of this work describes the incorporation of absorbing organic aerosol (i.e., brown carbon (BrC)) into the Community Earth System Model (CESM). Different BrC treatments are compared to observations of single scattering albedo (SSA) and absorption Angstrom exponent (AAE). BrC leads to an underestimation in model SSA, but an improvement in model AAE. The radiative effect due to aerosol-radiation interactions (RE[subscript]ari) of BrC is positive and is similar to previous BrC modeling studies. The radiative effect due to aerosol-cloud interactions (REaci) is positive, and is traced to a reduction in low clouds due to circulation changes related to the BrC heating of the atmosphere. BrC is also incorporated into the Snow Ice and Aerosol Radiative (SNICAR) model to estimate the snow darkening effect (SDE) due to BrC deposition on snow. The global SDE of BrC is comparable or greater than that of BC, with the largest contributions to BrC SDE occurring in the winter from BB sources. The second section addresses a systematic underestimation in BB SSA across a range of climate and earth system models. This underestimation is traced to BB microphysical and radiative property treatments for aerosol size, refractive index, and mixing state. Sensitivity tests conducted in CESM indicate that BB mixing state plays the largest role in this underestimation in SSA, and improvements to the model result in a reduction in global BB RE[subscript]ari.