Download or read book Continuum Mechanics of Anisotropic Materials written by Stephen C. Cowin and published by Springer Science & Business Media. This book was released on 2013-01-09 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Download or read book Continuum Mechanics and Theory of Materials written by Peter Haupt and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
Download or read book Mechanics of Anisotropic Materials written by Jacek J. Skrzypek and published by Springer. This book was released on 2015-05-09 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is focused on constitutive description of mechanical behaviour of engineering materials: both conventional (polycrystalline homogeneous isotropic or anisotropic metallic materials) and non-conventional (heterogeneous multicomponent anisotropic composite materials). Effective material properties at the macro-level depend on both the material microstructure (originally isotropic or anisotropic) as well as dissipative phenomena occurred on fabrication and consecutive loading phase (hardening) resulting in irreversible microstructure changes (acquired anisotropy). The material symmetry is a background and anisotropy is a core around which the book is formed. In this way a revision of classical rules of enhanced constitutive description of materials is required.
Download or read book Continuum Mechanics and Plasticity written by Han-Chin Wu and published by CRC Press. This book was released on 2004-12-20 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous advances in computer technologies and methods have precipitated a great demand for refinements in the constitutive models of plasticity. Such refinements include the development of a model that would account for material anisotropy and produces results that compare well with experimental data. Key to developing such models-and to meeting many other challenges in the field- is a firm grasp of the principles of continuum mechanics and how they apply to the formulation of plasticity theory. Also critical is understanding the experimental aspects of plasticity and material anisotropy. Integrating the traditionally separate subjects of continuum mechanics and plasticity, this book builds understanding in all of those areas. Part I provides systematic, comprehensive coverage of continuum mechanics, from a review of Carteisian tensors to the relevant conservation laws and constitutive equation. Part II offers an exhaustive presentation of the continuum theory of plasticity. This includes a unique treatment of the experimental aspects of plasticity, covers anisotropic plasticity, and incorporates recent research results related to the endochronic theory of plasticity obtained by the author and his colleagues. By bringing all of these together in one book, Continuum Mechanics and Plasticity facilitates the learning of solid mechanics. Its readers will be well prepared for pursuing either research related to the mechanical behavior of engineering materials or developmental work in engineering analysis and design.
Download or read book Continuum Theory of the Mechanics of Fibre Reinforced Composites written by A.J.M. Spencer and published by Springer. This book was released on 2014-05-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Anisotropic Elasticity with Matlab written by Chyanbin Hwu and published by Springer Nature. This book was released on 2021-04-27 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the theory of anisotropic elasticity with the computer program for analytical solutions as well as boundary element methods. It covers the elastic analysis of two-dimensional, plate bending, coupled stretching-bending, and three-dimensional deformations, and is extended to the piezoelectric, piezomagnetic, magnetic-electro-elastic, viscoelastic materials, and the ones under thermal environment. The analytical solutions include the solutions for infinite space, half-space, bi-materials, wedges, interface corners, holes, cracks, inclusions, and contact problems. The boundary element solutions include BEMs for two-dimensional anisotropic elastic, piezoelectric, magnetic-electro-elastic, viscoelastic analyses, and their associated dynamic analyses, as well as coupled stretching-bending analysis, contact analysis, and three-dimensional analysis. This book also provides source codes and examples for all the presenting analytical solutions and boundary element methods. The program is named as AEPH (Anisotropic Elastic Plates – Hwu), which contains 204 MATLAB functions.
Download or read book Continuum Damage Mechanics written by Sumio Murakami and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application to the modeling of the constitutive and the evolution equations of damaged materials are descried as a systematic basis for the subsequent development throughout the book. Part II describes the application of the fundamental theories developed in Part I to typical damage and fracture problems encountered in various fields of the current engineering. Important engineering aspects of elastic-plastic or ductile damage, their damage mechanics modeling and their further refinement are first discussed in Chapter 6. Chapters 7 and 8 are concerned with the modeling of fatigue, creep, creep-fatigue and their engineering application. Damage mechanics modeling of complicated crack closure behavior in elastic-brittle and composite materials are discussed in Chapters 9 and 10. In Chapter 11, applicability of the local approach to fracture by means of damage mechanics and finite element method, and the ensuing mathematical and numerical problems are briefly discussed. A proper understanding of the subject matter requires knowledge of tensor algebra and tensor calculus. At the end of this book, therefore, the foundations of tensor analysis are presented in the Appendix, especially for readers with insufficient mathematical background, but with keen interest in this exciting field of mechanics.
Download or read book Applied Mechanics of Solids written by Allan F. Bower and published by CRC Press. This book was released on 2009-10-05 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o
Download or read book Nonlinear Continuum Mechanics and Large Inelastic Deformations written by Yuriy I. Dimitrienko and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics – kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.
Download or read book The Behavior of Shells Composed of Isotropic and Composite Materials written by Jack R. Vinson and published by Springer Science & Business Media. This book was released on 1992-01-31 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shell structures are used in all phases of structures, from space vehicles to deep submergence hulls, from nuclear reactors to domes on sport arenas and civic buildings. With new materials and manufacturing methods, curved thin walled structures are being used increasingly. This text is a graduate course in the theory of shells. It covers shells of isotropic materials, such as metal alloys and plastics, and shells of composite materials, such as fibre reinforced polymer, metal or ceramic matrix materials. It provides the essential information for an understanding of the underlying theory, and solution of some of the basic problems. It also provides a basis to study the voluminous shell literature. Beyond being primarily a textbook, it is intended also for self study by practising engineers who would like to learn more about the behaviour of shells. The book has two parts: Part I deals with shells of isotropic materials. In this part the mathematical formulations are introduced involving curvilinear coordinates. The techniques of solutions and resulting behavior is compared to planar thin walled isotropic structures such as plates and beams. Part II then treats the behavior of shells, involving anisotropic composite materials, so widely used today. The analysis involves the complications due to the many elastic constants, effects of transverse shear deformation, thermal thickening and offer effects arising from the properties of composite materials.
Download or read book Advanced Solid Mechanics written by Farzad Hejazi and published by CRC Press. This book was released on 2021-05-09 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is to demonstrate the fundamental theory of advanced solid mechanics through simplified derivations with details illustrations to deliver the principal concepts. It covers all conceptual principals on two- and three-dimensional stresses, strains, stress-strain relations, theory of elasticity and theory of plasticity in any type of solid materials including anisotropic, orthotropic, homogenous and isotropic. Detailed explanation and clear diagrams and drawings are accompanied with the use of proper jargons and notations to present the ideas and appropriate guide the readers to explore the core of the advanced solid mechanics backed by case studies and examples. Aimed at undergraduate, senior undergraduate students in advanced solid mechanics, solid mechanics, strength of materials, civil/mechanical engineering, this book Provides simplified explanation and detailed derivation of correlation and formula implemented in advanced solid mechanics Covers state of two and three-dimensional stresses and strains in solid materials in various conditions Describes principal constitutive models for various type of materials include of anisotropic, orthotropic, homogenous and isotropic materials. Includes stress-strain relation and theory of elasticity for solid materials. Explores inelastic behaviour of material, theory of plasticity and yielding criteria.
Download or read book Tensor Algebra and Tensor Analysis for Engineers written by Mikhail Itskov and published by Springer Science & Business Media. This book was released on 2009-04-30 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.
Download or read book Constitutive Modelling of Solid Continua written by José Merodio and published by Springer Nature. This book was released on 2019-11-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.
Download or read book Computational Continuum Mechanics of Nanoscopic Structures written by Esmaeal Ghavanloo and published by Springer. This book was released on 2019-02-19 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive treatment of nonlocal elasticity theory as applied to the prediction of the mechanical characteristics of various types of biological and non-biological nanoscopic structures with different morphologies and functional behaviour. It combines fundamental notions and advanced concepts, covering both the theory of nonlocal elasticity and the mechanics of nanoscopic structures and systems. By reporting on recent findings and discussing future challenges, the book seeks to foster the application of nonlocal elasticity based approaches to the emerging fields of nanoscience and nanotechnology. It is a self-contained guide, and covers all relevant background information, the requisite mathematical and computational techniques, theoretical assumptions, physical methods and possible limitations of the nonlocal approach, including some practical applications. Mainly written for researchers in the fields of physics, biophysics, mechanics, and nanoscience, as well as computational engineers, the book can also be used as a reference guide for senior undergraduate and graduate students, as well as practicing engineers working in a range of areas, such as computational condensed matter physics, computational materials science, computational nanoscience and nanotechnology, and nanomechanics.
Download or read book Linear and Non linear Continuum Solid Mechanics written by Santiago Hernández and published by WIT Press. This book was released on 2021-06-28 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deformable solids, that is to say, those which undergo changes in geometry when subjected to external loads or other types of solicitations, as well as other related topics are the focus of this book. Within the main field, this text deals with advanced linear elasticity and plasticity approaches and the behavioural study of more complex types of materials. This includes composites of more recent manufacture and others whose material characterisation has only recently been possible. It also describes how linear elastic behaviour extends to anisotropic materials in general and how deformations can result in small or large strain components. The information on plastic behaviour expands to include strain hardening of the materials. Amongst other new topics incorporated into this volume are studies of hyperelastic materials, which can represent elastomeric and some types of biological materials. A section of the book deals with viscoelastic materials, i.e. those who deform when subjected to long-term loads. The behaviour of viscoplasticity, as well as elasto-viscoplasticity, describes well other types of materials, including those present in many geotechnical sites. The objective of this volume is to present material that can be used for teaching continuum mechanics to students of mechanical, civil or aeronautical engineering. In order to understand the contents the reader only needs to know linear algebra and differential calculus. Examples have been included throughout the text and at the end of each chapter, exercises are presented which can be used to check on comprehension of the theoretical information presented.
Download or read book Applications of Tensor Functions in Solid Mechanics written by J.P. Boehler and published by Springer. This book was released on 2014-05-04 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elasticity of Transversely Isotropic Materials written by Haojiang Ding and published by Springer Science & Business Media. This book was released on 2006-07-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a comprehensive introduction to the theory and applications of the mechanics of transversely isotropic elastic materials. There are many reasons why it should be written. First, the theory of transversely isotropic elastic materials is an important branch of applied mathematics and engineering science; but because of the difficulties caused by anisotropy, the mathematical treatments and descriptions of individual problems have been scattered throughout the technical literature. This often hinders further development and applications. Hence, a text that can present the theory and solution methodology uniformly is necessary. Secondly, with the rapid development of modern technologies, the theory of transversely isotropic elasticity has become increasingly important. In addition to the fields with which the theory has traditionally been associated, such as civil engineering and materials engineering, many emerging technologies have demanded the development of transversely isotropic elasticity. Some immediate examples are thin film technology, piezoelectric technology, functionally gradient materials technology and those involving transversely isotropic and layered microstructures, such as multi-layer systems and tribology mechanics of magnetic recording devices. Thus a unified mathematical treatment and presentation of solution methods for a wide range of mechanics models are of primary importance to both technological and economic progress.