EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applications of Characteristic Functions

Download or read book Applications of Characteristic Functions written by Eugene Lukacs and published by . This book was released on 1964 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Mixture Models

    Book Details:
  • Author : Geoffrey McLachlan
  • Publisher : John Wiley & Sons
  • Release : 2004-03-22
  • ISBN : 047165406X
  • Pages : 419 pages

Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.

Book Univariate Stable Distributions

Download or read book Univariate Stable Distributions written by John P. Nolan and published by Springer Nature. This book was released on 2020-09-13 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.

Book Econometric Modelling with Time Series

Download or read book Econometric Modelling with Time Series written by Vance Martin and published by Cambridge University Press. This book was released on 2013 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.

Book Empirical Bayes Methods with Applications

Download or read book Empirical Bayes Methods with Applications written by J.S. Maritz and published by CRC Press. This book was released on 2018-01-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of Empirical Bayes Methods details are provided of the derivation and the performance of empirical Bayes rules for a variety of special models. Attention is given to the problem of assessing the goodness of an empirical Bayes estimator for a given set of prior data. A chapter is devoted to a discussion of alternatives to the empirical Bayes approach and there is also a chapter giving details of several actual applications of empirical Bayes method.

Book The Normal Distribution

    Book Details:
  • Author : Wlodzimierz Bryc
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461225604
  • Pages : 142 pages

Download or read book The Normal Distribution written by Wlodzimierz Bryc and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a concise presentation of the normal distribution on the real line and its counterparts on more abstract spaces, which we shall call the Gaussian distributions. The material is selected towards presenting characteristic properties, or characterizations, of the normal distribution. There are many such properties and there are numerous rel evant works in the literature. In this book special attention is given to characterizations generated by the so called Maxwell's Theorem of statistical mechanics, which is stated in the introduction as Theorem 0.0.1. These characterizations are of interest both intrin sically, and as techniques that are worth being aware of. The book may also serve as a good introduction to diverse analytic methods of probability theory. We use characteristic functions, tail estimates, and occasionally dive into complex analysis. In the book we also show how the characteristic properties can be used to prove important results about the Gaussian processes and the abstract Gaussian vectors. For instance, in Section 5.4 we present Fernique's beautiful proofs of the zero-one law and of the integrability of abstract Gaussian vectors. The central limit theorem is obtained via characterizations in Section 7.3.

Book Estimating Functions

    Book Details:
  • Author : V. P. Godambe
  • Publisher : Oxford University Press on Demand
  • Release : 1991
  • ISBN : 9780198522287
  • Pages : 344 pages

Download or read book Estimating Functions written by V. P. Godambe and published by Oxford University Press on Demand. This book was released on 1991 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises a comprehensive collection of original papers on the subject of estimating functions. It is intended to provide statisticians with an overview of both the theory and the applications of estimating functions in biostatistics, stochastic processes, and survey sampling. From the early 1960s when the concept of optimality criterion was first formulated, together with the later work on optimal estimating functions, this subject has become both an active research area in its own right and also a cornerstone of the modern theory of statistics. Individual chapters have been written by experts in their respective fields and as a result this volume will be an invaluable reference guide to this topic as well as providing an introduction to the area for non-experts.

Book Nonparametric Econometrics

Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.

Book Empirical Bayes Methods

Download or read book Empirical Bayes Methods written by J. S. Maritz and published by Routledge. This book was released on 2018-03-05 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1970; with a second edition in 1989. Empirical Bayes methods use some of the apparatus of the pure Bayes approach, but an actual prior distribution is assumed to generate the data sequence. It can be estimated thus producing empirical Bayes estimates or decision rules. In this second edition, details are provided of the derivation and the performance of empirical Bayes rules for a variety of special models. Attention is given to the problem of assessing the goodness of an empirical Bayes estimator for a given set of prior data. Chapters also focus on alternatives to the empirical Bayes approach and actual applications of empirical Bayes methods.

Book Introduction to Empirical Processes and Semiparametric Inference

Download or read book Introduction to Empirical Processes and Semiparametric Inference written by Michael R. Kosorok and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.

Book Modeling and Forecasting Electricity Loads and Prices

Download or read book Modeling and Forecasting Electricity Loads and Prices written by Rafal Weron and published by John Wiley & Sons. This book was released on 2007-01-30 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.

Book Continuous Bivariate Distributions

Download or read book Continuous Bivariate Distributions written by N. Balakrishnan and published by Springer Science & Business Media. This book was released on 2009-05-31 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with a review of general developments relating to bivariate distributions, this volume also covers copulas, a subject which has grown immensely in recent years. In addition, it examines conditionally specified distributions and skewed distributions.

Book Finite Mixture and Markov Switching Models

Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.

Book Statistical Testing Strategies in the Health Sciences

Download or read book Statistical Testing Strategies in the Health Sciences written by Albert Vexler and published by CRC Press. This book was released on 2017-12-19 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Testing Strategies in the Health Sciences provides a compendium of statistical approaches for decision making, ranging from graphical methods and classical procedures through computationally intensive bootstrap strategies to advanced empirical likelihood techniques. It bridges the gap between theoretical statistical methods and practical procedures applied to the planning and analysis of health-related experiments. The book is organized primarily based on the type of questions to be answered by inference procedures or according to the general type of mathematical derivation. It establishes the theoretical framework for each method, with a substantial amount of chapter notes included for additional reference. It then focuses on the practical application for each concept, providing real-world examples that can be easily implemented using corresponding statistical software code in R and SAS. The book also explains the basic elements and methods for constructing correct and powerful statistical decision-making processes to be adapted for complex statistical applications. With techniques spanning robust statistical methods to more computationally intensive approaches, this book shows how to apply correct and efficient testing mechanisms to various problems encountered in medical and epidemiological studies, including clinical trials. Theoretical statisticians, medical researchers, and other practitioners in epidemiology and clinical research will appreciate the book’s novel theoretical and applied results. The book is also suitable for graduate students in biostatistics, epidemiology, health-related sciences, and areas pertaining to formal decision-making mechanisms.

Book Contemporary Developments in Statistical Theory

Download or read book Contemporary Developments in Statistical Theory written by Soumendra Lahiri and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume highlights Prof. Hira Koul’s achievements in many areas of Statistics, including Asymptotic theory of statistical inference, Robustness, Weighted empirical processes and their applications, Survival Analysis, Nonlinear time series and Econometrics, among others. Chapters are all original papers that explore the frontiers of these areas and will assist researchers and graduate students working in Statistics, Econometrics and related areas. Prof. Hira Koul was the first Ph.D. student of Prof. Peter Bickel. His distinguished career in Statistics includes the receipt of many prestigious awards, including the Senior Humbolt award (1995), and dedicated service to the profession through editorial work for journals and through leadership roles in professional societies, notably as the past president of the International Indian Statistical Association. Prof. Hira Koul has graduated close to 30 Ph.D. students, and made several seminal contributions in about 125 innovative research papers. The long list of his distinguished collaborators is represented by the contributors to this volume.

Book The Fundamentals of Heavy Tails

Download or read book The Fundamentals of Heavy Tails written by Jayakrishnan Nair and published by Cambridge University Press. This book was released on 2022-06-09 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.

Book Loss Models

    Book Details:
  • Author : Stuart A. Klugman
  • Publisher : John Wiley & Sons
  • Release : 2012-01-25
  • ISBN : 0470391332
  • Pages : 758 pages

Download or read book Loss Models written by Stuart A. Klugman and published by John Wiley & Sons. This book was released on 2012-01-25 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.