EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Continuation Methods

Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Book Numerical Continuation Methods for Dynamical Systems

Download or read book Numerical Continuation Methods for Dynamical Systems written by Bernd Krauskopf and published by Springer. This book was released on 2007-11-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.

Book Introduction to Numerical Continuation Methods

Download or read book Introduction to Numerical Continuation Methods written by Eugene L. Allgower and published by SIAM. This book was released on 2003-01-01 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.

Book Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods

Download or read book Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods written by Nandan K. Sinha and published by CRC Press. This book was released on 2021-09-23 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods, Second Edition is aimed at senior undergraduate and graduate students of aerospace and mechanical engineering. The book uses an optimal mix of physical insight and mathematical presentation to illustrate the core concepts of professional aircraft flight dynamics. An updated version of the aerodynamic model is presented with the corrected definition of rate (dynamic) derivatives, supported with examples of real-life airplanes and related data and by open-source computational tools. It introduces bifurcation and continuation methods as a tool for flight dynamic analysis. FEATURES Covers an up-to-date, corrected, ‘clean’ presentation of the elements of flight dynamics Presents a blend of theory, practice and application with real-life practical examples Provides a unique viewpoint of applied aerodynamicists and aircraft designers Introduces bifurcation and continuation methods as a tool for flight dynamics analysis Includes a computational tool with real-life examples carried throughout the chapters The book is enriched with case studies of flight dynamics of a bird’s flight, of a six-seater rigid-wing airplane from a design perspective, and airship dynamics to highlight the modal behaviour of similar-looking vehicles that are distinct from each other. Excerpts from reviews of the first edition: "Flight dynamics is a topic that can cause difficulties to aerospace engineering students. This text leads the reader gently through the material with plenty of practical examples and student exercises. As such, it is easy to follow the material and to gradually develop a deep understanding of a demanding topic. The book is ideal for undergraduate students and is a good text for graduate students."––James F. Whidborne, Cranfield University, United Kingdom "The book covers all the aspects of flight dynamics traditionally found in such texts interspersed with examples of the treatment of features of current air vehicles....In my opinion, this book covers the subject comprehensively and is a desirable reference source for undergraduates and graduates alike."––R.J. Poole, MRAeS, The Aeronautical Journal, June 2014 "The book design and the methodology of interpretation are directed to a wide range of target audience/population interested in studying the dynamics of flight. Given the scale and organization of information, the book will also be a useful tool in the analysis of flight dynamics for professionals in this field. The book is sure to appeal to anyone interested in the dynamics of flight."––Jaroslav Salga, Advances in Military Technology, June 2014

Book Numerical Continuation and Bifurcation in Nonlinear PDEs

Download or read book Numerical Continuation and Bifurcation in Nonlinear PDEs written by Hannes Uecker and published by SIAM. This book was released on 2021-08-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

Book Implicit Curves and Surfaces  Mathematics  Data Structures and Algorithms

Download or read book Implicit Curves and Surfaces Mathematics Data Structures and Algorithms written by Abel Gomes and published by Springer Science & Business Media. This book was released on 2009-05-12 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implicit objects have gained increasing importance in geometric modeling, visualisation, animation, and computer graphics, because their geometric properties provide a good alternative to traditional parametric objects. This book presents the mathematics, computational methods and data structures, as well as the algorithms needed to render implicit curves and surfaces, and shows how implicit objects can easily describe smooth, intricate, and articulatable shapes, and hence why they are being increasingly used in graphical applications. Divided into two parts, the first introduces the mathematics of implicit curves and surfaces, as well as the data structures suited to store their sampled or discrete approximations, and the second deals with different computational methods for sampling implicit curves and surfaces, with particular reference to how these are applied to functions in 2D and 3D spaces.

Book Continuation Techniques and Bifurcation Problems

Download or read book Continuation Techniques and Bifurcation Problems written by MITTELMANN and published by Birkhäuser. This book was released on 2013-11-21 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of parameter-dependent nonlinear has received much attention in recent years. Numerical continuation techniques allow the efficient computation of solution branches in a one-parameter problem. In many cases continuation procedures are used as part of a more complete analysis of a nonlinear problem, based on bifurcation theory and singularity theory. These theories contribute to the understanding of many nonlinear phenomena in nature and they form the basis for various analytical and numerical tools, which provide qualitative and quantitative results about nonlinear systems. In this issue we have collected a number of papers dealing with continuation techniques and bifurcation problems. Readers familiar with the notions of continuation and bifurcation will find recent research results addressing a variety of aspects in this issue. Those who intend to learn about the field or a specific topic in it may find it useful to first consult earlier literature on the numerical treatment of these problems together with some theoretical background. The papers in this issue fall naturally into different groups.

Book Introduction to Numerical Continuation Methods

Download or read book Introduction to Numerical Continuation Methods written by Eugene L. Allgower and published by SIAM. This book was released on 2003-01-01 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. Introduction to Numerical Continuation Methods also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals.

Book Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems

Download or read book Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems written by Alexander Morgan and published by SIAM. This book was released on 2009-01-01 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the numerical technique of polynomial continuation, which is used to compute solutions to systems of polynomial equations. Originally published in 1987, it remains a useful starting point for the reader interested in learning how to solve practical problems without advanced mathematics. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems is easy to understand, requiring only a knowledge of undergraduate-level calculus and simple computer programming. The book is also practical; it includes descriptions of various industrial-strength engineering applications and offers Fortran code for polynomial solvers on an associated Web page. It provides a resource for high-school and undergraduate mathematics projects. Audience: accessible to readers with limited mathematical backgrounds. It is appropriate for undergraduate mechanical engineering courses in which robotics and mechanisms applications are studied.

Book Continuation and Bifurcations  Numerical Techniques and Applications

Download or read book Continuation and Bifurcations Numerical Techniques and Applications written by Dirk Roose and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Research Workshop, Leuven, Belgium, September 18-22, 1989

Book Continuation Methods

Download or read book Continuation Methods written by Hansjörg Wacker and published by . This book was released on 1978 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics

Download or read book Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics written by V.I. Shalashilin and published by Springer Science & Business Media. This book was released on 2003-09-30 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The optimal continuation parameter provides the best conditions in a linearized system of equations at any moment of the continuation process. This is one of the first books in which the best parametrization is regarded systematically for a wide class of problems. It is of interest to scientists, specialists, and postgraduate students of applied and numerical mathematics and mechanics.

Book Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods

Download or read book Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods written by Nandan K. Sinha and published by CRC Press. This book was released on 2016-04-19 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many textbooks are unable to step outside the classroom and connect with industrial practice, and most describe difficult-to-rationalize ad hoc derivations of the modal parameters. In contrast, Elementary Flight Dynamics with an Introduction to Bifurcation and Continuation Methods uses an optimal mix of physical insight and mathematical presentatio

Book Nonlinear Vibrations and Stability of Shells and Plates

Download or read book Nonlinear Vibrations and Stability of Shells and Plates written by Marco Amabili and published by Cambridge University Press. This book was released on 2008-01-14 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book explores both theoretical and experimental aspects of nonlinear vibrations and stability of shells and plates. It is ideal for researchers, professionals, students, and instructors. Expert researchers will find the most recent progresses in nonlinear vibrations and stability of shells and plates, including advanced problems of shells with fluid-structure interaction. Professionals will find many practical concepts, diagrams, and numerical results, useful for the design of shells and plates made of traditional and advanced materials. They will be able to understand complex phenomena such as dynamic instability, bifurcations, and chaos, without needing an extensive mathematical background. Graduate students will find (i) a complete text on nonlinear mechanics of shells and plates, collecting almost all the available theories in a simple form, (ii) an introduction to nonlinear dynamics, and (iii) the state of art on the nonlinear vibrations and stability of shells and plates, including fluid-structure interaction problems.

Book Recipes for Continuation

Download or read book Recipes for Continuation written by Harry Dankowicz and published by SIAM. This book was released on 2013-08-08 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the mathematical methodology of parameter continuation. It develops a systematic formalism for constructing and implementing abstract representations of continuation problems with equal emphasis on theoretical rigor, algorithm development and software engineering. The book demonstrates the use of fully developed toolbox templates for boundary-value problems to the analysis of periodic orbits, quasi-periodic invariant tori, and connecting orbits between equilibria and/or periodic orbits. The book contains extensive and fully-worked examples that illustrate the application of the MATLAB-based Computational Continuation Core (COCO) to cutting-edge research in applied dynamical systems. Many exercises and open-ended projects on both theoretical and algorithmic aspects of the material are provided, suitable for self-study and course assignments. It is intended for students and teachers of nonlinear dynamics and engineering at the advanced undergraduate or first-year graduate level, as well as practitioners engaged in modeling dynamical systems or software development.

Book The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

Download or read book The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science written by Andrew J Sommese and published by World Scientific. This book was released on 2005-03-21 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.

Book Least Squares Finite Element Methods

Download or read book Least Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.