EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Constructing Correlated Spin States with Neutral Atoms in Optical Lattices

Download or read book Constructing Correlated Spin States with Neutral Atoms in Optical Lattices written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1.

Book Constructing Correlated Spin States with Neutral Atoms in Optical Lattices

Download or read book Constructing Correlated Spin States with Neutral Atoms in Optical Lattices written by Artur Widera and published by . This book was released on 2007 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Artificial Gauge Fields with Ultracold Atoms in Optical Lattices

Download or read book Artificial Gauge Fields with Ultracold Atoms in Optical Lattices written by Monika Aidelsburger and published by Springer. This book was released on 2015-12-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.

Book Realizing Quantum Spin Models with 7Li Atoms in an Optical Lattice

Download or read book Realizing Quantum Spin Models with 7Li Atoms in an Optical Lattice written by Ivana Ljubomirova Dimitrova and published by . This book was released on 2020 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum spin Hamiltonians are paradigmatic models, which display different kinds of quantum phase transitions, strongly-correlated and topological ground states, and various regimes of transport. Expanding their significance, many mappings exist between quantum spin models and other systems in different areas of physics, mathematics, and beyond. Even though quantum spin models have been studied extensively, there are still many open questions. Simulating these Hamiltonians with the system of ultracold atoms in optical lattices provides a new perspective with the wide tunability of parameters and the minimal coupling to the environment. The mapping involves using the Mott insulating state of ultracold atoms in optical lattices, where the energy of a second-order tunneling process (superexchange) maps to the parameters of a Heisenberg model. This thesis provides a detailed roadmap for the design and building of such a quantum simulator with 7Li atoms in optical lattices. Each step of the process is described, together with the methods and techniques used for the building and the characterization of the physical system. A focus is placed on using the Mott insulator as a starting point for spin physics experiments and, in particular, on the characterization and improvements of the mapping from a density sector description to a spin sector description of the system. Several schemes for implementing and studying spin systems are presented. In particular, the feasibility of implementing the Heisenberg spin-1/2 and spin-1 models in this system is described. The tilted lattice is presented as a tool for studying pure superexchange-driven dynamics and for increasing their timescale by suppressing first order tunneling and the role of number defects. The first measurements and the tuning with this machine of superexchange-driven dynamics over a wide range in the anisotropic Heisenberg spin-1/2 models are presented. Finally, the versatility of the BEC 5 machine is showcased by a study which does not involve an optical lattice. It explores the realization of an exotic quantum phase, a supersolid, in a new way. After many years of building and improvements, the BEC 5 machine emerges as a repeatable and reliable quantum simulator which has a clear scientific agenda of exploring many-body ground states and non-equilibrium dynamics.

Book Probing Strongly Correlated States of Ultracold Atoms in Optical Lattices

Download or read book Probing Strongly Correlated States of Ultracold Atoms in Optical Lattices written by Simon Fölling and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms

Download or read book Fluctuations and Non Equilibrium Phenomena in Strongly Correlated Ultracold Atoms written by Kazuma Nagao and published by Springer Nature. This book was released on 2020-08-25 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses non-equilibrium quantum many-body dynamics, recently explored in an analog quantum simulator of strongly correlated ultracold atoms. The first part presents a field-theoretical analysis of the experimental observability of the Higgs amplitude mode that emerges as a relativistic collective excitation near a quantum phase transition of superfluid Bose gases in an optical lattice potential. The author presents the dynamical susceptibilities to external driving of the microscopic parameters, taking into account a leading-order perturbative correction from quantum and thermal fluctuations and shows clear signatures of the Higgs mode in these observables. This is the first result that strongly supports the stability of the Higgs mode in three-dimensional optical lattices even in the presence of a spatially inhomogeneous confinement potential and paves the way for desktop observations of the Higgs mode. In the second part, the author applies the semi-classical truncated-Wigner approximation (TWA) to far-from-equilibrium quantum dynamics. Specifically, he considers the recent experiments on quantum-quench dynamics in a Bose-Hubbard quantum simulator. A direct comparison shows remarkable agreement between the numerical results from TWA and the experimental data. This result clearly indicates the potential of such a semi-classical approach in reliably simulating many-body systems using classical computers. The book also includes several chapters providing comprehensive reviews of the recent studies on cold-atomic quantum simulation and various theoretical methods, including the Schwinger-boson approach in strongly correlated systems and the phase-space semi-classical method for far-from-equilibrium quantum dynamics. These chapters are highly recommended to students and young researchers who are interested in semi-classical approaches in non-equilibrium quantum dynamics.

Book Quantum Computation

    Book Details:
  • Author : Andreas De Vries
  • Publisher : BoD – Books on Demand
  • Release : 2012
  • ISBN : 3844819274
  • Pages : 222 pages

Download or read book Quantum Computation written by Andreas De Vries and published by BoD – Books on Demand. This book was released on 2012 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 1980s research on quantum computation has dramatically changed the theoretical perspectives of computer science. Quantum computers could enable unprecedented computational power and revolutionize our cryptographic systems, even our entire electronic communication. This textbook gives an introduction to the theory of quantum computation. The author has chosen an elementary and lean theoretical approach, presupposing mathematical and physical knowledge which is standard in undergraduate courses of scientific or engineering studies, in essence linear algebra and complex numbers. The necessary mathematical notions are given in the appendix. Contents - Strange quantum world, qubits und quantum gates - Quantum Fourier transformation and QFT algorithms - Quantum search, quantum communication, error correcting quantum codes - How to build and simulate a quantum computer - Density operators and measurements - Complexity theory and quantum logic Who should read this book? - Students of engineering, especially electronic engineering - Students of computer science, physics, or mathematics - Practitioners in business and economy who want to understand, apply, or evaluate this new technology

Book Hybrid Quantum Systems

    Book Details:
  • Author : Yoshiro Hirayama
  • Publisher : Springer Nature
  • Release : 2022-01-06
  • ISBN : 9811666792
  • Pages : 352 pages

Download or read book Hybrid Quantum Systems written by Yoshiro Hirayama and published by Springer Nature. This book was released on 2022-01-06 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art research on quantum hybridization, manipulation, and measurement in the context of hybrid quantum systems. It covers a broad range of experimental and theoretical topics relevant to quantum hybridization, manipulation, and measurement technologies, including a magnetic field sensor based on spin qubits in diamond NV centers, coherently coupled superconductor qubits, novel coherent couplings between electron and nuclear spin, photons and phonons, and coherent coupling of atoms and photons. Each topic is concisely described by an expert at the forefront of the field, helping readers quickly catch up on the latest advances in fundamental sciences and technologies of hybrid quantum systems, while also providing an essential overview.

Book Quantum Mechanics with Applications to Nanotechnology and Information Science

Download or read book Quantum Mechanics with Applications to Nanotechnology and Information Science written by Yehuda B. Band and published by Academic Press. This book was released on 2013-01-10 with total page 993 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has

Book Ultracold Atoms in Optical Lattices

Download or read book Ultracold Atoms in Optical Lattices written by Maciej Lewenstein and published by Oxford University Press. This book was released on 2012-03-08 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.

Book Emergence of Unconventional Phases in Quantum Spin Systems

Download or read book Emergence of Unconventional Phases in Quantum Spin Systems written by Jean-Sébastien Bernier and published by . This book was released on 2008 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large- N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1) in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways.In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.

Book Advances in Atomic  Molecular  and Optical Physics

Download or read book Advances in Atomic Molecular and Optical Physics written by and published by Academic Press. This book was released on 2012-10-18 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field which is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts, and contain both relevant review material and detailed descriptions of important recent developments. - International experts - Comprehensive articles - New developments

Book Many Body Physics with Ultracold Gases

Download or read book Many Body Physics with Ultracold Gases written by Christophe Salomon and published by Oxford University Press (UK). This book was released on 2013 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.

Book Hubbard Model  The  Recent Results

Download or read book Hubbard Model The Recent Results written by Mario G Rasetti and published by World Scientific. This book was released on 1991-07-03 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles provides authoritative and up-to-date reviews on the Hubbard Model. It will be useful to graduate students and researchers in the field.

Book Physics  Uspekhi

Download or read book Physics Uspekhi written by and published by . This book was released on 2001 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Many Body Physics of Ultracold Molecules in Optical Lattices

Download or read book Quantum Many Body Physics of Ultracold Molecules in Optical Lattices written by Michael L. Wall and published by Springer. This book was released on 2015-04-20 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.

Book Laser Spectroscopy   Proceedings Of The Xxii International Conference

Download or read book Laser Spectroscopy Proceedings Of The Xxii International Conference written by Kai Dieckmann and published by World Scientific. This book was released on 2016-10-14 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: ICOLS features the latest developments in the area of laser spectroscopy and related topics in atomic, molecular, and optical physics and other disciplines. The talks covered a broad range of exciting physics, such as precision tests of fundamental symmetries with atoms and molecules, atomic clocks, quantum many-body physics with ultra-cold atoms, atom interferometry, quantum information science with photons and ions, quantum optics, and ultra-fast atomic and molecular dynamics.The conference program comprised 14 sessions with 9 keynote addresses, 25 invited talks, and 3 hot topic talks. The speakers came from 15 different countries. Ever since the ICOLS conference series originated in 1973, its proceedings have been highly valued by many for capturing important developments in the field and offering the room to represent various aspects of specific research topics. The present volume contains some of the invited talks delivered at the conference.