EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Conservative Finite Difference Methods on General Grids

Download or read book Conservative Finite Difference Methods on General Grids written by Mikhail Shashkov and published by CRC Press. This book was released on 2018-02-06 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.

Book Conservative Finite Difference Methods on General Grids

Download or read book Conservative Finite Difference Methods on General Grids written by Mikhail Shashkov and published by CRC Press. This book was released on 2018-02-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.

Book Numerical Techniques for Global Atmospheric Models

Download or read book Numerical Techniques for Global Atmospheric Models written by Peter H. Lauritzen and published by Springer Science & Business Media. This book was released on 2011-03-29 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.

Book Moving Finite Element Method

Download or read book Moving Finite Element Method written by Maria do Carmo Coimbra and published by CRC Press. This book was released on 2016-11-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.

Book The Finite Difference Modelling of Earthquake Motions

Download or read book The Finite Difference Modelling of Earthquake Motions written by Peter Moczo and published by Cambridge University Press. This book was released on 2014-04-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.

Book Compatible Spatial Discretizations

Download or read book Compatible Spatial Discretizations written by Douglas N. Arnold and published by Springer Science & Business Media. This book was released on 2007-01-26 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: The IMA Hot Topics workshop on compatible spatialdiscretizations was held in 2004. This volume contains original contributions based on the material presented there. A unique feature is the inclusion of work that is representative of the recent developments in compatible discretizations across a wide spectrum of disciplines in computational science. Abstracts and presentation slides from the workshop can be accessed on the internet.

Book Applications of Fluid Dynamics

Download or read book Applications of Fluid Dynamics written by M.K. Singh and published by Springer. This book was released on 2017-11-04 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents high-quality papers presented at 3rd International Conference on Applications of Fluid Dynamics (ICAFD 2016) organized by Department of Applied Mathematics, ISM Dhanbad, Jharkhand, India in association with Fluid Mechanics Group, University of Botswana, Botswana. The main theme of the Conference is "Sustainable Development in Africa and Asia in context of Fluid Dynamics and Modeling Approaches". The book is divided into seven sections covering all applications of fluid dynamics and their allied areas such as fluid dynamics, nanofluid, heat and mass transfer, numerical simulations and investigations of fluid dynamics, magnetohydrodynamics flow, solute transport modeling and water jet, and miscellaneous. The book is a good reference material for scientists and professionals working in the field of fluid dynamics.

Book Discrete Variational Derivative Method

Download or read book Discrete Variational Derivative Method written by Daisuke Furihata and published by CRC Press. This book was released on 2010-12-09 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of "structure-preserving num

Book Parallel Processing and Applied Mathematics

Download or read book Parallel Processing and Applied Mathematics written by Roman Wyrzykowski and published by Springer. This book was released on 2008-05-29 with total page 1437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics, PPAM 2007, held in Gdansk, Poland, in September 2007. The 63 revised full papers of the main conference presented together with 85 revised workshop papers were carefully reviewed and selected from over 250 initial submissions. The papers are organized in topical sections on parallel/distributed architectures and mobile computing, numerical algorithms and parallel numerics, parallel and distributed non-numerical algorithms, environments and tools for as well as applications of parallel/distributed/grid computing, evolutionary computing, meta-heuristics and neural networks. The volume proceeds with the outcome of 11 workshops and minisymposia dealing with novel data formats and algorithms for dense linear algebra computations, combinatorial tools for parallel sparse matrix computations, grid applications and middleware, large scale computations on grids, models, algorithms and methodologies for grid-enabled computing environments, scheduling for parallel computing, language-based parallel programming models, performance evaluation of parallel applications on large-scale systems, parallel computational biology, high performance computing for engineering applications, and the minisymposium on interval analysis.

Book Advances in Imaging and Electron Physics

Download or read book Advances in Imaging and Electron Physics written by and published by Elsevier. This book was released on 2000-04-19 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

Book Field Methods in Marine Science

Download or read book Field Methods in Marine Science written by Scott Milroy and published by Garland Science. This book was released on 2020-10-12 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Methods in Marine Science: From Measurements to Models is an authoritative guide of the methods most appropriate for field research within the marine sciences, from experimental design to data analysis. Written for upper-level undergraduate and graduate students as well as early-career researchers, this textbook also serves as an accessible introduction to the concepts and practice of modeling marine system dynamics. This textbook trains the next generation of field scientists to move beyond the classic methods of data collection and statistical analysis to contemporary methods of numerical modeling; to pursue the assimilation and synthesis of information, not the mere recording of data. Boxes and side bars highlight important questions, interesting facts, relevant examples, and research techniques that supplement the text. Students and researchers alike will find the thorough appendices useful as a way of expanding comprehension of fundamental concepts.

Book Computer Algebra in Scientific Computing CASC 2001

Download or read book Computer Algebra in Scientific Computing CASC 2001 written by Viktor G. Ganzha and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: CASC 2001 continues a tradition ~ started in 1998 ~ of international con ferences on the latest advances in the application of computer algebra systems to the solution of various problems in scientific computing. The three ear (CASs) lier conferences in this sequence, CASC'98, CASC'99, and CASC 2000, were held, Petersburg, Russia, in Munich, Germany, and in Samarkand, respectively, in St. Uzbekistan, and proved to be very successful. We have to thank the program committee, listed overleaf, for a tremendous job in soliciting and providing reviews for the submitted papers. There were more than three reviews per submission on average. The result of this job is reflected in the present volume, which contains revised versions of the accepted papers. The collection of papers included in the proceedings covers various topics of computer algebra methods, algorithms and software applied to scientific computing. In particular, five papers are devoted to the implementation of the analysis of involutive systems with the aid of CASso The specific examples include new efficient algorithms for the computation of Janet bases for monomial ideals, involutive division, involutive reduction method, etc. A number of papers deal with application of CASs for obtaining and vali dating new exact solutions to initial and boundary value problems for partial differential equations in mathematical physics. Several papers show how CASs can be used to obtain analytic solutions of initial and boundary value problems for ordinary differential equations and for studying their properties.

Book Advances in Imaging and Electron Physics

Download or read book Advances in Imaging and Electron Physics written by Peter W. Hawkes and published by Elsevier. This book was released on 2002-04-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

Book Pricing Derivatives Under L  vy Models

Download or read book Pricing Derivatives Under L vy Models written by Andrey Itkin and published by Birkhäuser. This book was released on 2017-02-27 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a novel numerical approach to solving partial integro-differential equations arising in asset pricing models with jumps, which greatly exceeds the efficiency of existing approaches. The method, based on pseudo-differential operators and several original contributions to the theory of finite-difference schemes, is new as applied to the Lévy processes in finance, and is herein presented for the first time in a single volume. The results within, developed in a series of research papers, are collected and arranged together with the necessary background material from Lévy processes, the modern theory of finite-difference schemes, the theory of M-matrices and EM-matrices, etc., thus forming a self-contained work that gives the reader a smooth introduction to the subject. For readers with no knowledge of finance, a short explanation of the main financial terms and notions used in the book is given in the glossary. The latter part of the book demonstrates the efficacy of the method by solving some typical problems encountered in computational finance, including structural default models with jumps, and local stochastic volatility models with stochastic interest rates and jumps. The author also adds extra complexity to the traditional statements of these problems by taking into account jumps in each stochastic component while all jumps are fully correlated, and shows how this setting can be efficiently addressed within the framework of the new method. Written for non-mathematicians, this book will appeal to financial engineers and analysts, econophysicists, and researchers in applied numerical analysis. It can also be used as an advance course on modern finite-difference methods or computational finance.

Book Numerical Methods for PDEs

Download or read book Numerical Methods for PDEs written by Daniele Antonio Di Pietro and published by Springer. This book was released on 2018-10-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.

Book Numerical Mathematics and Advanced Applications

Download or read book Numerical Mathematics and Advanced Applications written by Miloslav Feistauer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect the major part of the lectures given at ENU MATH2003, the European Conference on Numerical Mathematics and Ad vanced Applications, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men tion fluid dynamics, continuum mechanics, electromagnetism, phase transi tion, cosmology, medicine, economics, finance, etc. The success of applications of numerical methods is conditioned by changing its basic instruments and looking for new appropriate techniques adapted to new problems as well as new computer architectures. The ENUMATH conferences were established in order to provide a fo rum for discussion of current topics of numerical mathematics. They seek to convene leading experts and young scientists with special emphasis on con tributions from Europe. Recent results and new trends are discussed in the analysis of numerical algorithms as well as in their applications to challenging scientific and industrial problems. The first ENUMATH conference was organized in Paris in 1995, then the series continued by the conferences in Heidelberg 1997, Jyvaskyla 1999 and Ischia Porto 2001. It was a great pleasure and honour for the Czech numerical community that it was decided at Ischia Porto to organize the ENUMATH2003 in Prague. It was the first time when this conference crossed the former Iron Courtain and was organized in a postsocialist country.

Book The Mimetic Finite Difference Method for Elliptic Problems

Download or read book The Mimetic Finite Difference Method for Elliptic Problems written by Lourenco Beirao da Veiga and published by Springer. This book was released on 2014-05-22 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.