Download or read book Conditional Specification of Statistical Models written by Barry C. Arnold and published by Springer Science & Business Media. This book was released on 2007-06-02 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efforts to visualize multivariate densities necessarily involve the use of cross-sections, or, equivalently, conditional densities. This book focuses on distributions that are completely specified in terms of conditional densities. They are appropriately used in any modeling situation where conditional information is completely or partially available. All statistical researchers seeking more flexible models than those provided by classical models will find conditionally specified distributions of interest.
Download or read book Advances in Mathematical and Statistical Modeling written by Barry C. Arnold and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enrique Castillo is a leading figure in several mathematical and engineering fields. Organized to honor Castillo’s significant contributions, this volume is an outgrowth of the "International Conference on Mathematical and Statistical Modeling," and covers recent advances in the field. Applications to safety, reliability and life-testing, financial modeling, quality control, general inference, as well as neural networks and computational techniques are presented.
Download or read book Flexible Imputation of Missing Data Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
Download or read book Advances in Statistics Theory and Applications written by Indranil Ghosh and published by Springer Nature. This book was released on 2021-04-01 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited collection brings together internationally recognized experts in a range of areas of statistical science to honor the contributions of the distinguished statistician, Barry C. Arnold. A pioneering scholar and professor of statistics at the University of California, Riverside, Dr. Arnold has made exceptional advancements in different areas of probability, statistics, and biostatistics, especially in the areas of distribution theory, order statistics, and statistical inference. As a tribute to his work, this book presents novel developments in the field, as well as practical applications and potential future directions in research and industry. It will be of interest to graduate students and researchers in probability, statistics, and biostatistics, as well as practitioners and technicians in the social sciences, economics, engineering, and medical sciences.
Download or read book Probability and Statistical Models with Applications written by CH. A. Charalambides and published by CRC Press. This book was released on 2000-09-21 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph of carefully collected articles reviews recent developments in theoretical and applied statistical science, highlights current noteworthy results and illustrates their applications; and points out possible new directions to pursue. With its enlightening account of statistical discoveries and its numerous figures and tables, Probabili
Download or read book Distribution Models Theory written by Rafael Herrerias-pleguezuelo and published by World Scientific. This book was released on 2006-08-30 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distribution Models Theory is a revised edition of papers specially selected by the Scientific Committee for the Fifth Workshop of Spanish Scientific Association of Applied Economy on Distribution Models Theory held in Granada (Spain) in September 2005. The contributions offer a must-have point of reference on models theory.This book has been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP®/ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version/ISI Proceedings)
Download or read book Algebraic and Geometric Methods in Statistics written by Paolo Gibilisco and published by Cambridge University Press. This book was released on 2010 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of algebraic statistics and information geometry, which also explores the emerging connections between these two disciplines.
Download or read book Innovations in Multivariate Statistical Modeling written by Andriëtte Bekker and published by Springer Nature. This book was released on 2022-12-15 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate statistical analysis has undergone a rich and varied evolution during the latter half of the 20th century. Academics and practitioners have produced much literature with diverse interests and with varying multidisciplinary knowledge on different topics within the multivariate domain. Due to multivariate algebra being of sustained interest and being a continuously developing field, its appeal breaches laterally across multiple disciplines to act as a catalyst for contemporary advances, with its core inferential genesis remaining in that of statistics. It is exactly this varied evolution caused by an influx in data production, diffusion, and understanding in scientific fields that has blurred many lines between disciplines. The cross-pollination between statistics and biology, engineering, medical science, computer science, and even art, has accelerated the vast amount of questions that statistical methodology has to answer and report on. These questions are often multivariate in nature, hoping to elucidate uncertainty on more than one aspect at the same time, and it is here where statistical thinking merges mathematical design with real life interpretation for understanding this uncertainty. Statistical advances benefit from these algebraic inventions and expansions in the multivariate paradigm. This contributed volume aims to usher novel research emanating from a multivariate statistical foundation into the spotlight, with particular significance in multidisciplinary settings. The overarching spirit of this volume is to highlight current trends, stimulate a focus on, and connect multidisciplinary dots from and within multivariate statistical analysis. Guided by these thoughts, a collection of research at the forefront of multivariate statistical thinking is presented here which has been authored by globally recognized subject matter experts.
Download or read book Applied Missing Data Analysis Second Edition written by Craig K. Enders and published by Guilford Publications. This book was released on 2022-07-01 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most user-friendly and authoritative resource on missing data has been completely revised to make room for the latest developments that make handling missing data more effective. The second edition includes new methods based on factored regressions, newer model-based imputation strategies, and innovations in Bayesian analysis. State-of-the-art technical literature on missing data is translated into accessible guidelines for applied researchers and graduate students. The second edition takes an even, three-pronged approach to maximum likelihood estimation (MLE), Bayesian estimation as an alternative to MLE, and multiple imputation. Consistently organized chapters explain the rationale and procedural details for each technique and illustrate the analyses with engaging worked-through examples on such topics as young adult smoking, employee turnover, and chronic pain. The companion website (www.appliedmissingdata.com) includes datasets and analysis examples from the book, up-to-date software information, and other resources. New to This Edition *Expanded coverage of Bayesian estimation, including a new chapter on incomplete categorical variables. *New chapters on factored regressions, model-based imputation strategies, multilevel missing data-handling methods, missing not at random analyses, and other timely topics. *Presents cutting-edge methods developed since the 2010 first edition; includes dozens of new data analysis examples. *Most of the book is entirely new.
Download or read book Privacy in Statistical Databases written by Josep Domingo-Ferrer and published by Springer. This book was released on 2004-06-30 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Privacy in statistical databases is about ?nding tradeo?s to the tension between the increasing societal and economical demand for accurate information and the legal and ethical obligation to protect the privacy of individuals and enterprises, which are the source of the statistical data. Statistical agencies cannot expect to collect accurate information from individual or corporate respondents unless these feel the privacy of their responses is guaranteed; also, recent surveys of Web users show that a majority of these are unwilling to provide data to a Web site unless they know that privacy protection measures are in place. “Privacy in Statistical Databases2004” (PSD2004) was the ?nal conference of the CASC project (“Computational Aspects of Statistical Con?dentiality”, IST-2000-25069). PSD2004 is in the style of the following conferences: “Stat- tical Data Protection”, held in Lisbon in 1998 and with proceedings published by the O?ce of O?cial Publications of the EC, and also the AMRADS project SDC Workshop, held in Luxemburg in 2001 and with proceedings published by Springer-Verlag, as LNCS Vol. 2316. The Program Committee accepted 29 papers out of 44 submissions from 15 di?erentcountriesonfourcontinents.Eachsubmittedpaperreceivedatleasttwo reviews. These proceedings contain the revised versions of the accepted papers. These papers cover the foundations and methods of tabular data protection, masking methods for the protection of individual data (microdata), synthetic data generation, disclosure risk analysis, and software/case studies.
Download or read book Handbook Of Applied Econometrics And Statistical Inference written by Aman Ullah and published by CRC Press. This book was released on 2002-01-29 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summarizes developments and techniques in the field. It highlights areas such as sample surveys, nonparametic analysis, hypothesis testing, time series analysis, Bayesian inference, and distribution theory for applications in statistics, economics, medicine, biology, and engineering.
Download or read book Monte Carlo Simulation Based Statistical Modeling written by Ding-Geng (Din) Chen and published by Springer. This book was released on 2017-02-01 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.
Download or read book Distributions With Given Marginals and Statistical Modelling written by Carles M. Cuadras and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the meeting "Distributions with given marginals and statistical modelling", held in Barcelona (Spain), July 17- 20, 2000. This is the fourth meeting on given marginals, showing that this topic has aremarkable interest. BRIEF HISTORY The construction of distributions with given marginals started with the seminal papers by Hoeffding (1940) and Fn!chet (1951). Since then, many others have contributed on this topic: Dall' Aglio, Farlie, Gumbel, Johnson, Kellerer, Kotz, Morgenstern, Marshali, Olkin, Strassen, Vitale, Whitt, etc., as weIl as Arnold, Cambanis, Deheuvels, Genest, Frank, Joe, Kirneldorf, Nelsen, Rüschendorf, Sampson, Scarsini, Tiit, etc. In 1957 Sklar and Schweizer introduced probabilistic metric spaces. In 1975 Kirneldorf and Sampson studied the uniform representation of a bivariate dis tribution and proposed the desirable conditions that should be satisfied by any bivariate family. In 1991 Darsow, Nguyen and Olsen defined a natural operation between cop ulas, with applications in stochastic processes. In 1993, AIsina, Nelsen and Schweizer introduced the notion of quasi-copula
Download or read book Explanatory Item Response Models written by Paul de Boeck and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume gives a new and integrated introduction to item response models (predominantly used in measurement applications in psychology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. It also includes a chapter on the statistical background and one on useful software.
Download or read book Spatial Statistics and Modeling written by Carlo Gaetan and published by Springer Science & Business Media. This book was released on 2009-11-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelation and second-order statistics, maximum likelihood methods, approximate inference using the pseudo-likelihood or Monte-Carlo simulations, statistics for point processes and Bayesian hierarchical models. A chapter is devoted to Markov Chain Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings algorithms and exact simulation). A large number of real examples are studied with R, and each chapter ends with a set of theoretical and applied exercises. While a foundation in probability and mathematical statistics is assumed, three appendices introduce some necessary background. The book is accessible to senior undergraduate students with a solid math background and Ph.D. students in statistics. Furthermore, experienced statisticians and researchers in the above-mentioned fields will find the book valuable as a mathematically sound reference. This book is the English translation of Modélisation et Statistique Spatiales published by Springer in the series Mathématiques & Applications, a series established by Société de Mathématiques Appliquées et Industrielles (SMAI).
Download or read book Hierarchical Modeling and Analysis for Spatial Data written by Sudipto Banerjee and published by CRC Press. This book was released on 2014-09-12 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and ModelingSince the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflec
Download or read book Bayesian and Frequentist Regression Methods written by Jon Wakefield and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.