EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Effective Computational Methods for Wave Propagation

Download or read book Effective Computational Methods for Wave Propagation written by Nikolaos A. Kampanis and published by CRC Press. This book was released on 2008-02-25 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable

Book Computational Wave Propagation

Download or read book Computational Wave Propagation written by Bjorn Engquist and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications COMPUTATIONAL WAVE PROPAGATION is based on the workshop with the same title and was an integral part of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Bjorn Engquist and Gregory A. Kriegsmann for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the Office of Naval Research, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE Although the field of wave propagation and scattering has its classical roots in the last century, it has enjoyed a rich and vibrant life over the past 50 odd years. Scientists, engineers, and mathematicians have devel oped sophisticated asymptotic and numerical tools to solve problems of ever increasing complexity. Their work has been spurred on by emerging and maturing technologies, primarily concerned with the propagation and reception of information, and the efficient transmission of energy. The vitality of this scientific field is not waning. Increased demands to precisely quantify, measure, and control the propagation and scattering of waves in increasingly complex settings pose challenging scientific and mathematical problems. These push the envelope of analysis and comput ing, just as their forerunners did 50 years ago. These modern technological problems range from using underwater sound to monitor and predict global warming, to periodically embedding phase-sensitive amplifiers in optical fibers to insure long range digital communication.

Book Topics in Computational Wave Propagation

Download or read book Topics in Computational Wave Propagation written by Mark Ainsworth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Book Computational Wave Dynamics

Download or read book Computational Wave Dynamics written by Hitoshi Gotoh and published by World Scientific Publishing Company. This book was released on 2013-06-04 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive description of the latest theory-supported numerical technologies, as well as scientific and engineering applications for water surface waves. Its contents are crafted to cater to a step-by-step learning of computational wave dynamics and ocean wave modeling. It provides a comprehensive description from underlying theories of free-surface flows, to practical computational applications for coastal and ocean engineering on the basis of computational fluid dynamics (CFD). The text may be used as a textbook for advanced undergraduate students and graduate students to understand the theoretical background of wave computations, and the recent progress of computational techniques for free-surface and interfacial flows, such as Volume of Fluid (VOF), Constrained Interpolation Profile (CIP), Lagrangian Particle (SPH, MPS), Distinct Element (DEM) and Euler-Lagrange Hybrid Methods. It is also suitable for researchers and engineers who wish to apply CFD techniques to ocean modeling and practical coastal problems involving sediment transport, wave-structure interaction and surf zone flows.

Book Wave Propagation in Infinite Domains

Download or read book Wave Propagation in Infinite Domains written by Lutz Lehmann and published by Springer Science & Business Media. This book was released on 2007-05-24 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents theoretical fundamentals and applications of a new numerical model that has the ability to simulate wave propagation. Coverage examines linear waves in ideal fluids and elastic domains. In addition, the book includes a numerical simulation of wave propagation based on scalar and vector wave equations, as well as fluid-structure interaction and soil-structure interaction.

Book Wave Propagation in Viscoelastic and Poroelastic Continua

Download or read book Wave Propagation in Viscoelastic and Poroelastic Continua written by Martin Schanz and published by Springer Science & Business Media. This book was released on 2012-11-27 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

Book Progress in Computational Physics  PiCP

Download or read book Progress in Computational Physics PiCP written by Matthias Ehrhardt and published by Bentham Science Publishers. This book was released on 2010-11-13 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computat

Book Wave Phenomena

    Book Details:
  • Author : Lui Lam
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461388562
  • Pages : 281 pages

Download or read book Wave Phenomena written by Lui Lam and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: IJ:1 June of 1987 the Center for Applied Mathematics and Computer Science at San Jose State University received a bequest of over half a million dollars from the estate of Mrs. Marie Woodward. In the opening article of this collection of papers Jane Day, the founder of the Center, describes the background that led to this gift. In recognition of the bequest it was decided that a series of Woodward Conferences be established. The First Woodward Conference took place at San Jose State University on June 2-3 1988. The themes of the conference were the Theoretical, Computational and Practical Aspects of Wave Phenomena and these same themes have been used to divide the contributions to this volume. Part I is concerned with papers on theoretical aspects. This section includes papers on pseudo-differential operator techniques, inverse problems and the mathematical foundations of wave propagation in random media. Part II consists of papers that involve significant amounts of computation. Included are papers on the Fast Hartley Transform, computational algorithms for electromagnetic scattering problems, and nonlinear wave interaction problems in fluid mechanics. vi Part III contains papers with a genuine physics flavor. This final section illustrates the widespread importance of wave phenomena in physics. Among the phenomena considered are waves in the atmosphere, viscous fingering in liquid crystals, solitons and wave localization.

Book Numerical Modeling of Seismic Wave Propagation

Download or read book Numerical Modeling of Seismic Wave Propagation written by Johan O. A. Robertsson and published by SEG Books. This book was released on 2012 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.

Book Computational Seismology

    Book Details:
  • Author : Heiner Igel
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198717407
  • Pages : 340 pages

Download or read book Computational Seismology written by Heiner Igel and published by Oxford University Press. This book was released on 2017 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering and many other fields. It looks under the hood of current simulation technology and provides guidelines on what to look out for when carrying out sophisticated simulation tasks.

Book Wave Propagation in Complex Media

Download or read book Wave Propagation in Complex Media written by George Papanicolaou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.

Book Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Download or read book Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 written by Gary Cohen and published by Springer Science & Business Media. This book was released on 2003-06-17 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings include articles of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2003), held in Jyviiskylii, Finland, from June 30 to July 4, 2003. As in the previous five conferences in this series, its program covered a broad range of topics related to the mathematical modeling and numerical simulation of wave phenomena. Topics of specific interest included various areas of acoustics, electromagnetics, elasticity, and related optimization and inverse problems. In addition to the nine invited presentations, we selected for this confer ence 152 high-level papers from over 20 countries, especially from Europe. Most of them are contained in this book. They provide an extensive overview on the recent developments in the theoretical and applied wave propagation. The conference was organized by the University of Jyviiskylii and the Institut National de Recherche en Informatique et en Automatique (INRIA) in cooperation with Jyviiskylii Congresses. The editors would like to thank the organizing institutions and the in ternational scientific committee for their efforts in the preparation of this conference. We are also grateful to all the authors of the papers for their contributions to these proceedings. Special acknowledgment is due to Ms. Dominique Potherat, to Ms. Helene Chanut and to Ms. Marja-Leena Ranta lainen for their valuable assistance in the preparation of this proceedings volume. Jyviiskylii, Gary C. Cohen February 2003 Erkki H eikkola Patrick loly Pekka Neittaanmiiki Contents Part I Invited Presentations Dispersive Properties of High Order Finite Elements Mark Ainsworth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . ."

Book Parabolic Equation Methods for Electromagnetic Wave Propagation

Download or read book Parabolic Equation Methods for Electromagnetic Wave Propagation written by Mireille Levy and published by IET. This book was released on 2000 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides scientists and engineers with a tool for accurate assessment of diffraction and ducting on radio and radar systems. The author gives the mathematical background to parabolic equations modeling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries, and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar-cross- section computation. Annotation copyrighted by Book News, Inc., Portland, OR

Book Computational and Experimental Studies of Acoustic Waves

Download or read book Computational and Experimental Studies of Acoustic Waves written by Mahmut Reyhanoglu and published by BoD – Books on Demand. This book was released on 2018-01-04 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent studies of acoustic wave propagation through different media including the atmosphere, Earth's subsurface, complex dusty plasmas, porous materials, and flexible structures. Mathematical models of the underlying physical phenomena are introduced and studied in detail. With its seven chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent computational and experimental studies of acoustic waves. The first section consists of four chapters that focus on computational studies, while the next section is composed of three chapters that center on experimental studies.

Book Wave Propagation and Diffraction

Download or read book Wave Propagation and Diffraction written by Igor T. Selezov and published by Springer. This book was released on 2017-09-05 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents two distinct aspects of wave dynamics – wave propagation and diffraction – with a focus on wave diffraction. The authors apply different mathematical methods to the solution of typical problems in the theory of wave propagation and diffraction and analyze the obtained results. The rigorous diffraction theory distinguishes three approaches: the method of surface currents, where the diffracted field is represented as a superposition of secondary spherical waves emitted by each element (the Huygens–Fresnel principle); the Fourier method; and the separation of variables and Wiener–Hopf transformation method. Chapter 1 presents mathematical methods related to studying the problems of wave diffraction theory, while Chapter 2 deals with spectral methods in the theory of wave propagation, focusing mainly on the Fourier methods to study the Stokes (gravity) waves on the surface of inviscid fluid. Chapter 3 then presents some results of modeling the refraction of surf ace gravity waves on the basis of the ray method, which originates from geometrical optics. Chapter 4 is devoted to the diffraction of surface gravity waves and the final two chapters discuss the diffraction of waves by semi-infinite domains on the basis of method of images and present some results on the problem of propagation of tsunami waves. Lastly, it provides insights into directions for further developing the wave diffraction theory.

Book Spectral Finite Element Method

Download or read book Spectral Finite Element Method written by Srinivasan Gopalakrishnan and published by Springer Science & Business Media. This book was released on 2007-12-05 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. Readers will gain understanding of how to formulate Spectral Finite Element; learn about wave behaviour in inhomogeneous and anisotropic media; and, be able to design some diagnostic tools for monitoring the health of a structure. Tables, figures and graphs support the theory and case studies are included.

Book Direct and Inverse Problems in Wave Propagation and Applications

Download or read book Direct and Inverse Problems in Wave Propagation and Applications written by Ivan Graham and published by Walter de Gruyter. This book was released on 2013-10-14 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.