EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Study of Microstructure Evolution During Phase Transformations

Download or read book Computational Study of Microstructure Evolution During Phase Transformations written by Taiwu Yu and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase transformation is always a critical topic in the study of materials science. Most people have been familiar with some transformations between solid and liquid, such as ice to water, or transformations between liquid and gas, such as water to vapor. Besides, the phase transformations in solids also occur everywhere. Some solid phase transformations occur due to temperature variations. Those transformations may also be affected by external stress or strain, as seen in shape memory alloys (SMAs). The solid-solid transformation is considered to be the one of the most effective ways to tailor the microstructure and properties of the alloys, moreover, it sometimes strengthens the structural materials. There are some types of solid-state phase transformations that are hard to characterize in the traditional experiments. The difficulty mainly comes from two aspects. Firstly, some of the phase transformations happen too fast, such as martensitic transformation. The speed of the martensitic transformation is close to the speed of sound traveling in solids (~1000m/s), which makes it difficult to know how it starts and evolves. Secondly, some of the phase transformation processes are too slow, such as oxidation. It could take years to form a continuous layer of oxides in microns. With the fast development of high-performance computing, the study of phase transformations through computational tools attracts more and more attention. The objective of this thesis is to apply computational tools to study the two types of phase transformations and their corresponding mechanical properties: precipitation and martensitic transformation. As one of the most important structural phase transformations discovered in metallurgy and materials science, martensitic transformation (MT) has been attracting continued attention since its discovery in the late nineteenth century till today because it relates closely to the functional properties of NiTi-based alloy such as the superelasticity and shape memory effect. Most importantly, MT can be tailored through nano-scale defects in materials. Firstly, nano-scale defects in the B2 parent phase are known to have profound impacts on the properties of NiTi-based shape memory alloys. We employed the phase field models (PFM) to study the effects of two typical nano-scale defects, nano-scale precipitates and voids, on MT. The simulation of precipitation unveiled the mechanical and chemical effects on the behavior of MT in NiTi-Hf alloys. Moreover, the simulation of MT with the coexistence of precipitates explained the mechanism of two typical patterns of martensite. The results indicates that the stress-strain response has great dependence on the concentration heterogeneity in the matrix as well as precipitate microstructures. Through the simulation we proved the feasibility to achieve linear or quasi-linear superelasticity with high recoverable strain (up to 4%) in NiTi-Hf alloys after the precipitation. In the simulation of MT under the effects of nano voids in NiTi, we observed that martensite could be confined in the interspacing area between voids. Besides, MT could be triggered at lower critical stress with larger volume fraction of voids. This simulation may shed lights on the design of the porous NiTi alloys for the biomedical application. In superalloys, the microstructure of precipitates can be altered by the formation of an oxide layer on the surface. It is observed that the \gamma\prime precipitates dissolve at the near-surface region with the formation of the oxide layer in the alloy. We employed DICTRA module in Thermo-calc Software to solve the multicomponent diffusion equations in alloy H282 with an outward flux of chromium or aluminum due to oxidation and applied PFM to simulate the dissolution of precipitates. The local variation of precipitates’ volume fraction as a function of oxidation time has been quantitatively determined. The calculation of precipitates depletion depth shows good agreement with the experiments. The highly heterogeneous structure of \gamma\prime precipitates is expected to have a significant effect on the creep behavior of the alloy.

Book Computational Materials Engineering

Download or read book Computational Materials Engineering written by Koenraad George Frans Janssens and published by Academic Press. This book was released on 2010-07-26 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling

Book Microstructure Evolution in Metal Forming Processes

Download or read book Microstructure Evolution in Metal Forming Processes written by J Lin and published by Elsevier. This book was released on 2012-07-09 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monitoring and control of microstructure evolution in metal processing is essential in developing the right properties in a metal. Microstructure evolution in metal forming processes summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes. Part one reviews the general principles involved in understanding and controlling microstructure evolution in metal forming. Techniques for modelling microstructure and optimising processes are explored, along with recrystallisation, grain growth, and severe plastic deformation. Microstructure evolution in the processing of steel is the focus of part two, which reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels. Part three examines microstructure evolution in the processing of other metals, including ageing behaviour in the processing of aluminium and microstructure control in processing nickel, titanium and other special alloys. With its distinguished editors and international team of expert contributors, Microstructure evolution in metal forming processes is an invaluable reference tool for metal processors and those using steels and other metals, as well as an essential guide for academics and students involved in fundamental metal research. Summarises the wealth of recent research on the mechanisms, modelling and control of microstructure evolution during metal forming processes Comprehensively discusses microstructure evolution in the processing of steel and reviews the modelling of phase transformations in steel, unified constitutive equations and work hardening in microalloyed steels Examines microstructure evolution in the processing of other materials, including ageing behaviour in the processing of aluminium

Book Computational Studies of Phase Stability and Microstructure Evolution

Download or read book Computational Studies of Phase Stability and Microstructure Evolution written by Z. K. Liu and published by . This book was released on 2012 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Continuum Scale Simulation of Engineering Materials

Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Book Sintering of Advanced Materials

Download or read book Sintering of Advanced Materials written by Zhigang Zak Fang and published by Elsevier. This book was released on 2010-09-27 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. Explores the thermodynamics of sintering including sinter bonding and densification Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials

Book Phase Transformations  Microstructure Evolution and Deformation

Download or read book Phase Transformations Microstructure Evolution and Deformation written by Yann Le Bouar and published by . This book was released on 2010 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling the Deformation  Recrystallization and Microstructure Related Properties in Metals

Download or read book Modelling the Deformation Recrystallization and Microstructure Related Properties in Metals written by Jurij J Sidor and published by Mdpi AG. This book was released on 2021-11-15 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the special issue related to Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals, we presented a wide spectrum of articles dealing with modelling of microstructural aspects involved in deformation and recrystallization as well as simulation of microstructure-based and texture-based properties in various metals. The latest advances in the theoretical interpretation of mesoscopic transformations based on experimental observations were partially discussed in the current special issue. The studies dealing with the modelling of structure-property relationships are likewise analyzed in the present collection of manuscripts. The contributions in the current collection evidently demonstrate that the properties of metallic materials are microstructure dependent and therefore the thermomechanical processing (TMP) of the polycrystalline aggregates should be strictly controlled to guarantee the desired bunch of qualities. Given this, the assessment of microstructure evolution in metallic systems is of extraordinary importance. Since the trial-error approach is a time-consuming and quite expensive methodology, the materials research community tends to employ a wide spectrum of computational approaches to simulate each chain of TMP and tune the processing variables to ensure the necessary microstructural state which will provide desired performance in the final product. Although many hidden facets of various technological processes and related microstructural changes were revealed in the submitted works by employing advanced computational approaches, nevertheless, the contributions collected in this issue clearly show that further efforts are required in the field of modelling to understand the complexity of material's world. The final goal of modelling efforts might be a development of a comprehensive model, which will be capable of describing many aspects of microstructure evolution during thermomechanical processing.

Book Phase Transformations  Microstructure Evolution and Deformation

Download or read book Phase Transformations Microstructure Evolution and Deformation written by Yann Le Bouar and published by . This book was released on 2010 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Materials Engineering

Download or read book Computational Materials Engineering written by Maciej Pietrzyk and published by Butterworth-Heinemann. This book was released on 2015-07-14 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. Presents the numerical approaches for high-accuracy calculations Provides researchers with essential information on the methods capable of exact representation of microstructure morphology Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time

Book Mathematics of Microstructure Evolution

Download or read book Mathematics of Microstructure Evolution written by Long-Qing Chen and published by Society for Industrial and Applied Mathematics (SIAM). This book was released on 1996 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials science is a growth area for mathematics in the United States. This volume unites mathematicians, computer scientists, physicists and material scientists in a comprehensive presentation of empirical material on microstructure evolution. The book's tutorial presentation of modern mathematical methods should make it a useful reference for materials scientists.

Book Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing  PRICM 8

Download or read book Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing PRICM 8 written by FernD.S. Marquis and published by Springer. This book was released on 2017-03-21 with total page 3431 pages. Available in PDF, EPUB and Kindle. Book excerpt: PRICM-8 features the most prominent and largest-scale interactions in advanced materials and processing in the Pacific Rim region. The conference is unique in its intrinsic nature and architecture which crosses many traditional discipline and cultural boundaries. This is a comprehensive collection of papers from the 15 symposia presented at this event.

Book Composition  and temperature dependence of    to    phase transformation in Ti Nb alloys

Download or read book Composition and temperature dependence of to phase transformation in Ti Nb alloys written by Yunting Su and published by OAE Publishing Inc.. This book was released on 2023-07-06 with total page 20 pages. Available in PDF, EPUB and Kindle. Book excerpt: ω phases have shown great effects on the superelasticity and modulus of metastable β-Ti alloys. In this study, the microstructure evolution during cooling and aging for β → ω phase transformation is investigated by integrating a thermodynamic database with phase field simulations. Our CALPHAD calculations based on an available thermodynamic database give the Gibbs energies of metastable β (Nb-lean β1 + Nb-rich β2 produced via spinodal decomposition) and ω phases in Ti-Nb. Informed by the results, our phase field simulations show that the formation mechanisms of ω exhibit dependence on the composition and temperature. The ω can form in Ti-26 at.% Nb without the assistance of spinodal decomposition. Further analysis shows that the precursory spinodal decomposition in the β phase occurs in Ti-50 at.% Nb, and could induce geometrically confined ω. The novel transformation pathway could create unique morphology of ω. This study could elucidate new insights into the ω phase transformation in Ti-Nb alloys and metastable β-Ti alloys having spinodal decomposition.

Book Quantitative Phase Field Modelling of Solidification

Download or read book Quantitative Phase Field Modelling of Solidification written by Nikolas Provatas and published by CRC Press. This book was released on 2021-10-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a study of phase field modelling of solidification in metal alloy systems. It is divided in two main themes. The first half discusses several classes of quantitative multi-order parameter phase field models for multi-component alloy solidification. These are derived in grand potential ensemble, thus tracking solidification in alloys through the evolution of the chemical potentials of solute species rather than the more commonly used solute concentrations. The use of matched asymptotic analysis for making phase field models quantitative is also discussed at length, and derived in detail in order to make this somewhat abstract topic accessible to students. The second half of the book studies the application of phase field modelling to rapid solidification where solute trapping and interface undercooling follow highly non-equilibrium conditions. In this limit, matched asymptotic analysis is used to map phase field evolution equations onto the continuous growth model, which is generally accepted as a sharp-interface description of solidification at rapid solidification rates. This book will be of interest to graduate students and researchers in materials science and materials engineering. Key Features Presents a clear path to develop quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics Derives and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics

Book Advances in Friction Stir Welding and Processing

Download or read book Advances in Friction Stir Welding and Processing written by M.-K. Besharati-Givi and published by Elsevier. This book was released on 2014-12-08 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Friction-stir welding (FSW) is a solid-state joining process primarily used on aluminum, and is also widely used for joining dissimilar metals such as aluminum, magnesium, copper and ferrous alloys. Recently, a friction-stir processing (FSP) technique based on FSW has been used for microstructural modifications, the homogenized and refined microstructure along with the reduced porosity resulting in improved mechanical properties. Advances in friction-stir welding and processing deals with the processes involved in different metals and polymers, including their microstructural and mechanical properties, wear and corrosion behavior, heat flow, and simulation. The book is structured into ten chapters, covering applications of the technology; tool and welding design; material and heat flow; microstructural evolution; mechanical properties; corrosion behavior and wear properties. Later chapters cover mechanical alloying and FSP as a welding and casting repair technique; optimization and simulation of artificial neural networks; and FSW and FSP of polymers. Provides studies of the microstructural, mechanical, corrosion and wear properties of friction-stir welded and processed materials Considers heat generation, heat flow and material flow Covers simulation of FSW/FSP and use of artificial neural network in FSW/FSP

Book Directions In Condensed Matter Physics  Memorial Volume In Honor Of Shang keng Ma

Download or read book Directions In Condensed Matter Physics Memorial Volume In Honor Of Shang keng Ma written by Geoffrey Grinstein and published by World Scientific. This book was released on 1986-08-01 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.