EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Statistics in the Earth Sciences

Download or read book Computational Statistics in the Earth Sciences written by Alan D. Chave and published by Cambridge University Press. This book was released on 2017-10-19 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a course taught by the author, this book combines the theoretical underpinnings of statistics with the practical analysis of Earth sciences data using MATLAB. The book is organized to introduce the underlying concepts, and then extends these to the data, covering methods that are most applicable to Earth sciences. Topics include classical parametric estimation and hypothesis testing, and more advanced least squares-based, nonparametric, and resampling estimators. Multivariate data analysis, not often encountered in introductory texts, is presented later in the book, and compositional data is treated at the end. Datasets and bespoke MATLAB scripts used in the book are available online, as well as additional datasets and suggested questions for use by instructors. Aimed at entering graduate students and practicing researchers in the Earth and ocean sciences, this book is ideal for those who want to learn how to analyse data using MATLAB in a statistically-rigorous manner.

Book Basic Elements of Computational Statistics

Download or read book Basic Elements of Computational Statistics written by Wolfgang Karl Härdle and published by Springer. This book was released on 2017-09-29 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs. The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various ma thematical roots of multivariate techniques. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.

Book Statistics of Earth Science Data

Download or read book Statistics of Earth Science Data written by Graham J. Borradaile and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "All in all, Graham Borradaile has written and interesting and idiosyncratic book on statistics for geoscientists that will be welcome among students, researchers, and practitioners dealing with orientation data. That should include engineering geologists who work with things like rock fracture orientation measurements or clast alignment in paleoseismic trenches. It won’t replace the collection of statistics and geostatistics texts in my library, but it will have a place among them and will likely be one of several references to which I turn when working with orientation data.... The text is easy to follow and illustrations are generally clear and easy to read..."(William C. Haneberg, Haneberg Geoscience)

Book Computational Statistics in the Earth Sciences

Download or read book Computational Statistics in the Earth Sciences written by Alan D. Chave and published by Cambridge University Press. This book was released on 2017-10-19 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines theoretical underpinnings of statistics with practical analysis of Earth sciences data using MATLAB. Supplementary resources are available online.

Book Data Analysis for the Geosciences

Download or read book Data Analysis for the Geosciences written by Michael W. Liemohn and published by John Wiley & Sons. This book was released on 2023-11-07 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: An initial course in scientific data analysis and hypothesis testing designed for students in all science, technology, engineering, and mathematics disciplines Data Analysis for the Geosciences: Essentials of Uncertainty, Comparison, and Visualization is a textbook for upper-level undergraduate STEM students, designed to be their statistics course in a degree program. This volume provides a comprehensive introduction to data analysis, visualization, and data-model comparisons and metrics, within the framework of the uncertainty around the values. It offers a learning experience based on real data from the Earth, ocean, atmospheric, space, and planetary sciences. Volume highlights include: Serves as an initial course in scientific data analysis and hypothesis testing Focuses on the methods of data processing Introduces a wide range of analysis techniques Describes the many ways to compare data with models Centers on applications rather than derivations Explains how to select appropriate statistics for meaningful decisions Explores the importance of the concept of uncertainty Uses examples from real geoscience observations Homework problems at the end of chapters The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Book Principles of Data Science

Download or read book Principles of Data Science written by Hamid R. Arabnia and published by Springer Nature. This book was released on 2020-07-08 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a thorough understanding of various research areas within the field of data science. The book introduces readers to various techniques for data acquisition, extraction, and cleaning, data summarizing and modeling, data analysis and communication techniques, data science tools, deep learning, and various data science applications. Researchers can extract and conclude various future ideas and topics that could result in potential publications or thesis. Furthermore, this book contributes to Data Scientists’ preparation and to enhancing their knowledge of the field. The book provides a rich collection of manuscripts in highly regarded data science topics, edited by professors with long experience in the field of data science. Introduces various techniques, methods, and algorithms adopted by Data Science experts Provides a detailed explanation of data science perceptions, reinforced by practical examples Presents a road map of future trends suitable for innovative data science research and practice

Book Advances in Data Science and Information Engineering

Download or read book Advances in Data Science and Information Engineering written by Robert Stahlbock and published by Springer Nature. This book was released on 2021-10-29 with total page 965 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents the proceedings of two conferences: the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020), which took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Papers cover all aspects of Data Science, Data Mining, Machine Learning, Artificial and Computational Intelligence (ICDATA) and Information Retrieval Systems, Information & Knowledge Engineering, Management and Cyber-Learning (IKE). Authors include academics, researchers, professionals, and students. Presents the proceedings of the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020); Includes papers on topics from data mining to machine learning to informational retrieval systems; Authors include academics, researchers, professionals and students.

Book Applications of Data Assimilation and Inverse Problems in the Earth Sciences

Download or read book Applications of Data Assimilation and Inverse Problems in the Earth Sciences written by Alik Ismail-Zadeh and published by Cambridge University Press. This book was released on 2023-06-30 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference on data assimilation and inverse problems, and their applications across a broad range of geophysical disciplines, ideal for researchers and graduate students. It highlights the importance of data assimilation for understanding dynamical processes of the Earth and its space environment, and summarises recent advances.

Book Computational Bayesian Statistics

Download or read book Computational Bayesian Statistics written by M. Antónia Amaral Turkman and published by Cambridge University Press. This book was released on 2019-02-28 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.

Book Uncertainty Quantification and Predictive Computational Science

Download or read book Uncertainty Quantification and Predictive Computational Science written by Ryan G. McClarren and published by Springer. This book was released on 2018-11-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-consequence decision-making throughout the engineering and physical sciences. Constructing sophisticated techniques for prediction from basic building blocks, the book first reviews the fundamentals that underpin later topics of the book including probability, sampling, and Bayesian statistics. Part II focuses on applying Local Sensitivity Analysis to apportion uncertainty in the model outputs to sources of uncertainty in its inputs. Part III demonstrates techniques for quantifying the impact of parametric uncertainties on a problem, specifically how input uncertainties affect outputs. The final section covers techniques for applying uncertainty quantification to make predictions under uncertainty, including treatment of epistemic uncertainties. It presents the theory and practice of predicting the behavior of a system based on the aggregation of data from simulation, theory, and experiment. The text focuses on simulations based on the solution of systems of partial differential equations and includes in-depth coverage of Monte Carlo methods, basic design of computer experiments, as well as regularized statistical techniques. Code references, in python, appear throughout the text and online as executable code, enabling readers to perform the analysis under discussion. Worked examples from realistic, model problems help readers understand the mechanics of applying the methods. Each chapter ends with several assignable problems. Uncertainty Quantification and Predictive Computational Science fills the growing need for a classroom text for senior undergraduate and early-career graduate students in the engineering and physical sciences and supports independent study by researchers and professionals who must include uncertainty quantification and predictive science in the simulations they develop and/or perform.

Book Statistics and Data Analysis in Geology

Download or read book Statistics and Data Analysis in Geology written by John C. Davis and published by John Wiley & Sons. This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special Features: · Offers a comprehensive treatment of statistics in geology.· Topics progress from background information to analysis of geological sequences, then maps, and finally multivariate observations.· The book places special emphasis on probability and statistics, including nonparametric statistics, constant-sum data, eigenvalue calculations, analysis of directional data, mapping and geostatistics, fractals, and multivariate analysis.· The text now includes numerous geological data sets that illustrate how specific computational procedures can be applied to problems in the Earth sciences. All data sets are available on the book's companion Web site.· Each chapter now ends with a set of exercises of greater or lesser complexity that the student can address using methods discussed in the chapter.· Provides expanded coverage of elementary probability theory.· The discussion of nonparametric methods has been expanded to address closure effects.· Coverage of eigenvalues and eigenvectors has been revised.· Includes a new section on singular value decomposition and the relationship between R- and Q-mode factor methods in the chapter on multivariate analysis.· The section on contour mapping has been revised to reflect modern practices.· Includes revised coverage of the many varieties of kriging and provides of series of simple demonstrations that illustrate how geostatistical methodologies work.· Includes a discussion of fractals, a promising area of future research.· The section on regression has been expanded to include several variants that have special significance in the Earth sciences.

Book Computational Statistical Methodologies and Modeling for Artificial Intelligence

Download or read book Computational Statistical Methodologies and Modeling for Artificial Intelligence written by Priyanka Harjule and published by CRC Press. This book was released on 2023-03-31 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers computational statistics-based approaches for Artificial Intelligence. The aim of this book is to provide comprehensive coverage of the fundamentals through the applications of the different kinds of mathematical modelling and statistical techniques and describing their applications in different Artificial Intelligence systems. The primary users of this book will include researchers, academicians, postgraduate students, and specialists in the areas of data science, mathematical modelling, and Artificial Intelligence. It will also serve as a valuable resource for many others in the fields of electrical, computer, and optical engineering. The key features of this book are: Presents development of several real-world problem applications and experimental research in the field of computational statistics and mathematical modelling for Artificial Intelligence Examines the evolution of fundamental research into industrialized research and the transformation of applied investigation into real-time applications Examines the applications involving analytical and statistical solutions, and provides foundational and advanced concepts for beginners and industry professionals Provides a dynamic perspective to the concept of computational statistics for analysis of data and applications in intelligent systems with an objective of ensuring sustainability issues for ease of different stakeholders in various fields Integrates recent methodologies and challenges by employing mathematical modeling and statistical techniques for Artificial Intelligence

Book Spatial Analysis

    Book Details:
  • Author : Tonny J. Oyana
  • Publisher : CRC Press
  • Release : 2015-07-28
  • ISBN : 1498707645
  • Pages : 316 pages

Download or read book Spatial Analysis written by Tonny J. Oyana and published by CRC Press. This book was released on 2015-07-28 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present p

Book Spatial Analysis Using Big Data

Download or read book Spatial Analysis Using Big Data written by Yoshiki Yamagata and published by Academic Press. This book was released on 2019-11-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial Analysis Using Big Data: Methods and Urban Applications helps readers understand the most powerful, state-of-the-art spatial econometric methods, focusing particularly on urban research problems. The methods represent a cluster of potentially transformational socio-economic modeling tools that allow researchers to capture real-time and high-resolution information to potentially reveal new socioeconomic dynamics within urban populations. Each method, written by leading exponents of the discipline, uses real-time urban big data to solve research problems in spatial science. Urban applications of these methods are provided in unsurpassed depth, with chapters on surface temperature mapping, view value analysis, community clustering and spatial-social networks, among many others. - Reviews some of the most powerful and challenging modern methods to study big data problems in spatial science - Provides computer codes written in R, MATLAB and Python to help implement methods - Applies these methods to common problems observed in urban and regional economics

Book Statistical Methods and Applications in Forestry and Environmental Sciences

Download or read book Statistical Methods and Applications in Forestry and Environmental Sciences written by Girish Chandra and published by Springer Nature. This book was released on 2020-01-04 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent developments in statistical methodologies with particular relevance to applications in forestry and environmental sciences. It discusses important methodologies like ranked set sampling, adaptive cluster sampling, small area estimation, calibration approach-based estimators, design of experiments, multivariate techniques, Internet of Things, and ridge regression methods. It also covers the history of the implementation of statistical techniques in Indian forestry and the National Forest Inventory of India. The book is a valuable resource for applied statisticians, students, researchers, and practitioners in the forestry and environment sector. It includes real-world examples and case studies to help readers apply the techniques discussed. It also motivates academicians and researchers to use new technologies in the areas of forestry and environmental sciences with the help of software like R, MATLAB, Statistica, and Mathematica.

Book Value of Information in the Earth Sciences

Download or read book Value of Information in the Earth Sciences written by Jo Eidsvik and published by Cambridge University Press. This book was released on 2015-11-19 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified framework for assessing the value of potential data-gathering schemes, with a focus on the Earth sciences.

Book Value of Information in the Earth Sciences

Download or read book Value of Information in the Earth Sciences written by Jo Eidsvik and published by Cambridge University Press. This book was released on 2015-11-19 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering the right kind and the right amount of information is crucial for any decision-making process. This book presents a unified framework for assessing the value of potential data gathering schemes by integrating spatial modelling and decision analysis, with a focus on the Earth sciences. The authors discuss the value of imperfect versus perfect information, and the value of total versus partial information, where only subsets of the data are acquired. Concepts are illustrated using a suite of quantitative tools from decision analysis, such as decision trees and influence diagrams, as well as models for continuous and discrete dependent spatial variables, including Bayesian networks, Markov random fields, Gaussian processes, and multiple-point geostatistics. Unique in scope, this book is of interest to students, researchers and industry professionals in the Earth and environmental sciences, who use applied statistics and decision analysis techniques, and particularly to those working in petroleum, mining, and environmental geoscience.