Download or read book Computational Nuclear Physics 2 written by K. Langanke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computation is essential to our modern understanding of nuclear systems. Although simple analytical models might guide our intuition, the complex ity of the nuclear many-body problem and the ever-increasing precision of experimental results require large-scale numerical studies for a quantitative understanding. Despite their importance, many nuclear physics computations remain something of a black art. A practicing nuclear physicist might be familiar with one or another type of computation, but there is no way to systemati cally acquire broad experience. Although computational methods and results are often presented in the literature, it is often difficult to obtain the working codes. More often than not, particular numerical expertise resides in one or a few individuals, who must be contacted informally to generate results; this option becomes unavailable when these individuals leave the field. And while the teaching of modern nuclear physics can benefit enormously from realistic computer simulations, there has been no source for much of the important material. The present volume, the second of two, is an experiment aimed at address ing some of these problems. We have asked recognized experts in various aspects of computational nuclear physics to codify their expertise in indi vidual chapters. Each chapter takes the form of a brief description of the relevant physics (with appropriate references to the literature), followed by a discussion of the numerical methods used and their embodiment in a FOR TRAN code. The chapters also contain sample input and test runs, as well as suggestions for further exploration.
Download or read book An Advanced Course in Computational Nuclear Physics written by Morten Hjorth-Jensen and published by Springer. This book was released on 2017-05-09 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.
Download or read book Computational Nuclear Engineering and Radiological Science Using Python written by Ryan McClarren and published by Academic Press. This book was released on 2017-10-19 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering. - Offers numerical methods as a tool to solve specific problems in nuclear engineering - Provides examples on how to simulate different problems and produce graphs using Python - Supplies accompanying codes and data on a companion website, along with solutions to end-of-chapter problems
Download or read book Computational Nuclear Physics 1 written by K. Langanke and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of standard problems in theoretical nuclear-structure physics is addressed by the well-documented computer codes presented in this book. Most of these codes were available up to now only through personal contact. The subject matter ranges from microscopic models (the shell, Skyrme-Hartree-Fock, and cranked Nilsson models) through collective excitations (RPA, IBA, and geometric model) to the relativistic impulse approximation, three-body calculations, variational Monte Carlo methods, and electron scattering. The 5 1/4'' high-density floppy disk that comes with the book contains the FORTRAN codes of the problems that are tackled in each of the ten chapters. In the text, the precise theoretical foundations and motivations of each model or method are discussed together with the numerical methods employed. Instructions for the use of each code, and how to adapt them to local compilers and/or operating systems if necessary, are included.
Download or read book Computational Many Particle Physics written by Holger Fehske and published by Springer. This book was released on 2007-12-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.
Download or read book An Introduction to Computational Physics written by Tao Pang and published by Cambridge University Press. This book was released on 2006-01-19 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced textbook provides an introduction to the basic methods of computational physics.
Download or read book Nuclear Physics written by National Research Council and published by National Academies Press. This book was released on 2013-02-25 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.
Download or read book Lattice QCD for Nuclear Physics written by Huey-Wen Lin and published by Springer. This book was released on 2014-11-21 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included.
Download or read book Handbook of Nuclear Physics written by Isao Tanihata and published by Springer Nature. This book was released on 2023-09-04 with total page 4180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
Download or read book Advances in Nuclear Physics written by J.W. Negele and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quest for many-body techniques and approximations to describe the essential physics of strongly interacting systems with many degrees of freedom is one of the central themes of contemporary nuclear physics. The three articles in this volume describe advances in this quest in three dif ferent areas of nuclear many-body physics: multi quark degrees of freedom in nucleon-nucleon interactions and light nuclei, multinucleon clusters in many-nucleon wave functions and reactions, and the nuclear-shell model. In each case the common issues arise of identifying the relevant degrees of freedom, truncating those that are inessential, formulating tractable approximations, and judiciously invoking phenomenology when it is not possible to proceed from first principles. Indeed, the parallels between the different applications are often striking, as in the case of the similarities in the treatment of clusters of quarks in nucleon-nucleon interactions and clusters of nucleons in nuclear reactions, and the central role of the resonating group approximation in treating both. Despite two decades of effort since the experimental discovery of quarks in nucleons, we are still far from a derivation of nucleon structure and nucleon-nucleon interactions directly from quantum chromodynamics.
Download or read book Introduction to Computational Physics for Undergraduates written by Omair Zubairi and published by Morgan & Claypool Publishers. This book was released on 2018-04-04 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.
Download or read book Advances In Nuclear Physics Proceedings Of The International Symposium written by Dorin Poenaru and published by World Scientific. This book was released on 2000-06-27 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interest in understanding the physical world that we live in, the origin of its formation and evolution, is reflected in the world-wide activities in Europe, the USA and Japan to set up powerful research facilities providing beams of radioactive nuclei of various kinds, and beams of extremely large energies. At the same time, complex and large detector arrays with improved technical capabilities are built either around these facilities or independently (dedicated to cosmic rays). Recently, spectacular progress has been made in superheavy nuclei, cold binary and ternary fission, nuclear shell structure and nuclear astrophysics, to mention only a few directions. The energy spectrum of cosmic rays exceeds the upper limits provided by artificial accelerators. An international collaboration has committed itself to the installation of an extremely large area detector array, AUGER, in order to study the highest particle energies in the Universe.
Download or read book From Nucleons to the Atomic Nucleus written by Kris Heyde and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present text grew out of a number of lecture courses for advanced under graduate and new graduate students in nuclear physics. They were given at summer schools in Leuven, Melbourne, and at study weeks for Dutch grad uate students which aimed to emphasize fundamental and topical aspects of nuclear physics. On occasion, part of the present text was presented to stu dents from a much wider field than just nuclear physics and also within a number of general physics colloquia, where, in addition to nuclear physicists, physicists from many other fields were present. In this respect, the intention is to present, in an amply illustrated form, the key quest ions that arise in nuclear physics. At the same time we try to show why a better understanding of the atomic nucleus is not only important in itself, but also yields essential insights into the many connections to other fields of physics. We thus concen trate on the unifying themes rather than addressing in great detail particular subfields of nuclear physics. The present project does not aim to be another comprehensive textbook on nuclear physics: Many of the detailed technical arguments that enter into the picture are not developed here as they would be in a more standard textbook. Instead they are presented using analogies, quite often with simple pictures and arguments that try to convey the general line of thinking and working in nuclear physics.
Download or read book Effective Computation in Physics written by Anthony Scopatz and published by "O'Reilly Media, Inc.". This book was released on 2015-06-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Download or read book Computational Methods For Two phase Flow And Particle Transport With Cd rom written by Wen Ho Lee and published by World Scientific Publishing Company. This book was released on 2013-03-22 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Download or read book A Survey of Computational Physics written by Rubin Landau and published by Princeton University Press. This book was released on 2011-10-30 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures
Download or read book Highlights Of Modern Nuclear Structure Proceedings Of The 6th International Spring Seminar On Nuclear Physics written by Aldo Covello and published by World Scientific. This book was released on 1999-09-17 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume discusses some of the main achievements and perspectives of nuclear structure physics for both experiment and theory. The main themes are: spectroscopy of exotic nuclei; from nucleon-nucleon interaction to nuclear structure; recent developments in the study of collective excitations; nuclear structure physics in other research fields.