Download or read book Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System written by Z Jin and published by Elsevier. This book was released on 2014-05-05 with total page 563 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System reviews how a wide range of materials are modelled and how this modelling is applied. Computational modelling is increasingly important in the design and manufacture of biomedical materials, as it makes it possible to predict certain implant-tissue reactions, degradation, and wear, and allows more accurate tailoring of materials' properties for the in vivo environment. Part I introduces generic modelling of biomechanics and biotribology with a chapter on the fundamentals of computational modelling of biomechanics in the musculoskeletal system, and a further chapter on finite element modelling in the musculoskeletal system. Chapters in Part II focus on computational modelling of musculoskeletal cells and tissues, including cell mechanics, soft tissues and ligaments, muscle biomechanics, articular cartilage, bone and bone remodelling, and fracture processes in bones. Part III highlights computational modelling of orthopedic biomaterials and interfaces, including fatigue of bone cement, fracture processes in orthopedic implants, and cementless cup fixation in total hip arthroplasty (THA). Finally, chapters in Part IV discuss applications of computational modelling for joint replacements and tissue scaffolds, specifically hip implants, knee implants, and spinal implants; and computer aided design and finite element modelling of bone tissue scaffolds. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and mechanical engineers, and those in academia. - Covers generic modelling of cells and tissues; modelling of biomaterials and interfaces; biomechanics and biotribology - Discusses applications of modelling for joint replacements and applications of computational modelling in tissue engineering
Download or read book Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System written by Z Jin and published by Woodhead Publishing. This book was released on 2020-09-29 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues, Second Edition reviews how a wide range of materials are modeled and applied. Chapters cover basic concepts for modeling of biomechanics and biotribology, the fundamentals of computational modeling of biomechanics in the musculoskeletal system, finite element modeling in the musculoskeletal system, computational modeling from a cells and tissues perspective, and computational modeling of the biomechanics and biotribology interactions, looking at complex joint structures. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and biomechanical engineers, and academics in related fields. This important new edition provides an up-to-date overview of the most recent research and developments involving hydroxyapatite as a key material in medicine and its application, including new content on novel technologies, biomorphic hydroxyapatite and more. - Provides detailed, introductory coverage of modeling of cells and tissues, modeling of biomaterials and interfaces, biomechanics and biotribology - Discusses applications of modeling for joint replacements and applications of computational modeling in tissue engineering - Offers a holistic perspective, from cells and small ligaments to complex joint interactions
Download or read book Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System written by Z Jin and published by . This book was released on 2014 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System reviews how a wide range of materials are modelled and how this modelling is applied. Computational modelling is increasingly important in the design and manufacture of biomedical materials, as it makes it possible to predict certain implant-tissue reactions, degradation, and wear, and allows more accurate tailoring of materials' properties for the in vivo environment. Part I introduces generic modelling of biomechanics and biotribology with a chapter on the fundamentals of computational modelling of biomechanics in the musculoskeletal system, and a further chapter on finite element modelling in the musculoskeletal system. Chapters in Part II focus on computational modelling of musculoskeletal cells and tissues, including cell mechanics, soft tissues and ligaments, muscle biomechanics, articular cartilage, bone and bone remodelling, and fracture processes in bones. Part III highlights computational modelling of orthopedic biomaterials and interfaces, including fatigue of bone cement, fracture processes in orthopedic implants, and cementless cup fixation in total hip arthroplasty (THA). Finally, chapters in Part IV discuss applications of computational modelling for joint replacements and tissue scaffolds, specifically hip implants, knee implants, and spinal implants; and computer aided design and finite element modelling of bone tissue scaffolds. This book is a comprehensive resource for professionals in the biomedical market, materials scientists and mechanical engineers, and those in academia. Covers generic modelling of cells and tissues; modelling of biomaterials and interfaces; biomechanics and biotribology Discusses applications of modelling for joint replacements and applications of computational modelling in tissue engineering.
Download or read book Human Orthopaedic Biomechanics written by Bernardo Innocenti and published by Academic Press. This book was released on 2022-02-24 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals. Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title. - Covers theoretical aspects (mechanics, stress analysis, constitutive laws for the various musculoskeletal tissues and mechanobiology) - Presents components of different regulatory aspects, failure analysis, post-marketing and clinical trials - Includes state-of-the-art methods used in orthopedic biomechanics and in designing orthopedic implants (experimental methods, finite element and rigid-body models, gait and fluoroscopic analysis, radiological measurements)
Download or read book Digital Human Modeling and Medicine written by Gunther Paul and published by Academic Press. This book was released on 2022-12-04 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital Human Modeling and Medicine: The Digital Twin explores the body of knowledge and state-of-the-art in Digital Human Modeling (DHM) and its applications in medicine. DHM is the science of representing humans with their physical properties, characteristics and behaviors in computerized, virtual models. These models can be used standalone or integrated with other computerized object design systems to both design or study designs of medical devices or medical device products and their relationship with humans. They serve as fast and cost-efficient computer-based tools for the assessment of human functional systems and human-system interaction. This book provides an industry first introductory and practitioner focused overview of human simulation tools, with detailed chapters describing body functional elements and organs, organ interactions and fields of application. Thus, DHM tools and a specific scientific/practical problem – functional study of the human body – are linked in a coherent framework. Eventually the book shows how DHM interfaces with common physical devices in medical practice, answering to a gap in literature and a common practitioner question. Case studies provide the applied knowledge for practitioners to make informed decisions. - A non-specialist level, up-to-date overview and introduction to all medically relevant DHM systems to inform trialing, procurement decisions and initial application - Includes user-level examples and case studies of DHM applications in various medical fields - Clearly structured and focused compendium that is easy to access, read and understand
Download or read book Multiscale Modelling in Biomedical Engineering written by Dimitrios I. Fotiadis and published by John Wiley & Sons. This book was released on 2023-06-07 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.
Download or read book Bioinspired Legged Locomotion written by Maziar Ahmad Sharbafi and published by Butterworth-Heinemann. This book was released on 2017-11-21 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. - Presents state-of-the-art control approaches with biological relevance - Provides a thorough understanding of the principles of organization of biological locomotion - Teaches the organization of complex systems based on low-dimensional motion concepts/control - Acts as a guideline reference for future robots/assistive devices with legged architecture - Includes a selective bibliography on the most relevant published articles
Download or read book Cartilage Tissue and Knee Joint Biomechanics written by Amirsadegh Rezazadeh Nochehdehi and published by Elsevier. This book was released on 2023-09-05 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cartilage, Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling is a cutting-edge multidisciplinary book specifically focused on modeling, characterization and related clinical aspects. The book takes a comprehensive approach towards mechanics, fundamentals, morphology and properties of Cartilage Tissue and Knee Joints. Leading researchers from health science, medical technologists, engineers, academics, government, and private research institutions across the globe have contributed to this book. This book is a very valuable resource for graduates and postgraduates, engineers and research scholars. The content also includes comprehensive real-world applications. As a reference for the total knee arthroplasty, this book focuses deeply on existing related theories (including: histology, design, manufacturing and clinical aspects) to assist readers in solving fundamental and applied problems in biomechanical and biomaterials characterization, modeling and simulation of human cartilages and cells. For biomedical engineers dealing with implants and biomaterials for knee joint injuries, this book will guide you in learning the knee anatomy, range of motion, surgical procedures, physiological loading and boundary conditions, biomechanics of connective soft tissues, type of injuries, and more. - Provides a comprehensive resource on the knee joint and its connective soft tissues; content included spans biomechanics, biomaterials, biology, anatomy, imaging and surgical procedure - Covers ISO and FDA based regulatory control and compliance in the manufacturing process - Includes discussions on the relationship between knee anatomical parameters and knee biomechanics
Download or read book Modeling of Microscale Transport in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2016-12-27 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels. - Features recent developments in theoretical and computational modeling for clinical researchers and engineers - Furthers researcher understanding of fluid flow in biological media and focuses on biofluidics at the microscale - Includes chapters expertly authored by internationally recognized authorities in the fundamental and applied fields that are associated with microscale transport in living media
Download or read book Experimental and Numerical Investigations in Materials Science and Engineering written by Nenad Mitrovic and published by Springer. This book was released on 2018-09-03 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of high-quality peer-reviewed research papers presented at the International Conference of Experimental and Numerical Investigations and New Technologies (CNNTech2018), held in Zlatibor, Serbia from 4 to 6 July 2018. The book discusses a wide variety of industrial, engineering and scientific applications of engineering techniques. Researchers from academia and the industry share their original work and exchange ideas, experiences, information, techniques, applications and innovations in the field of mechanical engineering, materials science, chemical and process engineering, experimental techniques, numerical methods and new technologies.
Download or read book Contact Mechanics of Articular Cartilage Layers written by Ivan Argatov and published by Springer. This book was released on 2015-06-15 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive and unifying approach to articular contact mechanics with an emphasis on frictionless contact interaction of thin cartilage layers. The first part of the book (Chapters 1–4) reviews the results of asymptotic analysis of the deformational behavior of thin elastic and viscoelastic layers. A comprehensive review of the literature is combined with the authors’ original contributions. The compressible and incompressible cases are treated separately with a focus on exact solutions for asymptotic models of frictionless contact for thin transversely isotropic layers bonded to rigid substrates shaped like elliptic paraboloids. The second part (Chapters 5, 6, and 7) deals with the non-axisymmetric contact of thin transversely isotropic biphasic layers and presents the asymptotic modelling methodology for tibio-femoral contact. The third part of the book consists of Chapter 8, which covers contact problems for thin bonded inhomogeneous transversely isotropic elastic layers and Chapter 9, which addresses various perturbational aspects in contact problems and introduces the sensitivity of articular contact mechanics. This book is intended for advanced undergraduate and graduate students, researchers in the area of biomechanics, and engineers interested and involved in the analysis and design of thin-layer structures.
Download or read book Advances in Bionanomaterials written by Stefano Piotto and published by Springer. This book was released on 2017-07-24 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on multidisciplinary research focusing on the analysis, synthesis and design of bionanomaterials. It merges the biophysicists’, the biochemists’ and bioengineers’ perspectives, covering the study of the basic properties of materials and their interaction with biological systems, the development of new devices for medical purposes such as implantable systems, and new algorithms and methods for modeling the mechanical, physical or biological properties of biomaterials. The different chapters, which are based on selected contributions presented at the second edition of BIONAM, held on October 4-7, 2016, in Salerno, Italy, cover both basic and applied research. This includes novel synthetic strategies for nanomaterials, as well as the implementation of bio- and smart materials for pharmacological and medical purposes (e.g. drug delivery, implantable systems), environmental applications, and many others. The book provides a broad audience of academic and professionals with a comprehensive, timely snapshot of the field of biomaterials. Besides offering a set of innovative theories together with the necessary practical tools for their implementation, it also highlights current challenges in the field, thus fostering new discussions and possible future collaborations between groups with different backgrounds.
Download or read book Biomaterials for Neural Tissue Engineering written by Oguzhan Gunduz and published by Elsevier. This book was released on 2023-04-18 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomaterials for Neural Tissue Engineering covers a range of materials and technologies used for regenerating or repairing neural tissue. With a strong focus on biomaterials and scaffolds, the book examines the testing and evaluation pathway for in-vitro and in-vivo testing trials. This book introduces the reader to the fundamentals of the nervous system from a tissue engineering perspective and goes on to describe contemporary technologies used in the development of neural repair materials, as well as currently available biomaterials suitable for neural tissue repair and regeneration. This detailed reference is ideal for those who are new to using biomaterials in tissue engineering, particularly those interested in the nervous system, including academics and early career researchers in the fields of materials science, regenerative medicine, biomedical engineering and clinical sciences. - Provides readers entering the field with a core introduction to neural tissue engineering processes and real-world applications - Comprehensively examines a variety of biomaterial approaches - Discusses the most current in-vitro and in-vivo testing and their importance in treating nervous system disorders - Details a broad range of natural and synthetic biomaterials used to engineer neural tissue
Download or read book Medical Imaging and Computer Aided Diagnosis written by Ruidan Su and published by Springer Nature. This book was released on 2024-01-20 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging. Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human–computer interaction, databases, and performance evaluation.
Download or read book Biophotonics for Medical Applications written by Igor Meglinski and published by Elsevier. This book was released on 2015-06-29 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophotonics for Medical Applications presents information on the interface between laser optics and cell biology/medicine. The book discusses the development and application of photonic techniques that aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states. Chapters cover the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications. - Presents information on the interface between laser optics and cell biology/medicine - Discusses the development and application of photonic techniques which aid the diagnosis and therapeutics of biological tissues in both healthy and diseased states - Presents the fundamental technologies used in biophotonics and a wide range of therapeutic and diagnostic applications
Download or read book Proceedings of the Sixth International Scientific Conference Intelligent Information Technologies for Industry IITI 22 written by Sergey Kovalev and published by Springer Nature. This book was released on 2022-10-30 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the works connected with the key advances in Intelligent Information Technologies for Industry presented in the main track of IITI 2022, the Sixth International Scientific Conference on Intelligent Information Technologies for Industry held on October 31 - November 6, 2022, in Istanbul, Turkey. The works were written by the experts in the field of artificial intelligence including topics such as machine learning, decision making intelligent systems, fuzzy logic, bioinspired systems and Bayesian networks. The following industrial application domains were touched: railway automation, intelligent medical systems, flexible socio-technical systems, navigation systems and energetic systems. The editors believe that this book will be helpful for all scientists and engineers interested in the modern state of applied artificial intelligence.
Download or read book Shoulder and Elbow Trauma and its Complications written by Michael Greiwe and published by Woodhead Publishing. This book was released on 2015-07-16 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Traumatic injuries to the shoulder remain a problem encountered by young and old alike. Trauma surgeons and shoulder and elbow specialists are called upon daily to improve the quality of life of injured individuals by restoring function, decreasing pain and returning individuals to their previous occupations and places in society. Such treatment provides both humanitarian and economic impact. Only recently have techniques and technology allowed surgeons to restore lives to such a degree following these injuries. Still, shoulder and elbow trauma remains a vexing problem for patients and surgeons alike. Many injuries result in lost work and serious debility including lack of function, post-traumatic arthritis and pain. This important textbook provides a systematic and comprehensive guide to the different types of shoulder trauma and the management of its associated complications. In Part One, the focus is on the most common types of shoulder trauma, with chapters covering anterior instability, traumatic rotator cuff tears, fractures, joint injuries and the floating shoulder and includes sections on the most common complications befalling each injury. Part II then reviews the management of the most common complications. Chapters include detailed analyses of persistent anterior shoulder instability, several forms of nonunion and malunion, failed acromioclavicular joint reconstruction, post-traumatic arthropathy and traumatic osteonecrosis, and failed arthroplasty for fracture. - Reviews common types of shoulder trauma - Addresses the common complications associated with each injury - Provides a detailed guide to the management of common complications