EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Modelling and Uncertainty Quantification of Blood Flow in the Coronary Arteries

Download or read book Computational Modelling and Uncertainty Quantification of Blood Flow in the Coronary Arteries written by Justin Sheldon Tran and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atherosclerotic coronary artery disease continues to negatively impact the lives of millions worldwide. Computational fluid dynamics modeling of coronary blood flow has the potential to help improve clinical outcomes and aid in treatment planning. Significant advancements in coronary blood flow modeling in recent years have opened a wide range of applications such as assessing risk for disease progression or providing a platform for virtual surgery and treatment planning. To encourage the growth of this field and promote adoption of computational results in the clinic, it is crucial that these tools be made as automated as possible so they can be applied to large patient cohorts. In addition, the variability of computational results with respect to uncertainties in the inputs and model must be better understood and systematically quantified. Addressing these concerns is the subject of this thesis. In the first part, a framework for automatically tuning the lumped parameter boundary conditions in simulations of coronary blood flow is developed and demonstrated. Specifying boundary conditions in complex computational models is not a trivial task, especially when the dimensionality of the input space is high and multiple constraints on the outputs need to be satisfied simultaneously. Specifically in the context of patient-specific coronary simulations, clinical data such as the blood pressure, cardiac output, and coronary flow waveforms must be simultaneously satisfied with a large set of input parameters that include lumped resistances, capacitances, and heart model parameters. A typical user can eventually gain expertise to modify the input parameters to satisfy targets, but this manual tuning is time-consuming and not easily reproduced. We thus formulate the automated tuning process as a Bayesian inverse problem in which the model parameters are treated as random variables, and optimal parameters are determined by finding the maximum of the posterior distribution of input parameters. We also perform sensitivity analysis on the input parameters to determine a subset of thirteen parameters that most influence the clinical targets. In the second part, we perform uncertainty quantification on patient-specific simulations of coronary artery bypass graft hemodynamics. Vein graft failure in patients with coronary bypass continues to be a major clinical issue with relatively little knowledge about the mechanisms for failure. Simulations have shown that predicted quantities such as wall shear stress or wall strain can be useful in predicting vein graft failure, but adoption of such results in clinical practice is hindered due to the fact simulations can only produce deterministic results with no range of confidence. Uncertainty quantification provides a framework for quantifying the uncertainty in computational results, and we applied it to assess the variability in computed predictions of time-average wall shear stress and wall strain under uncertainty in the lumped parameter boundary conditions and vessel wall material properties. To achieve this aim efficiently, we develop a novel submodeling strategy for reducing the computational cost of the analysis. We also, for the first time, consider spatial variability in the graft wall material properties by using a random field description. We finally propagate these uncertainties forward using a newly developed multi-resolution approach. The results show that the time-averaged wall shear stress is relatively well estimated with confidence intervals about 35\% of the mean value, but the wall strain exhibited significantly more variability due to the large uncertainty in the material properties. In the third part, we perform a comparison of methods for modeling wall deformability in vascular blood flow simulations. Though sometimes neglected, wall deformability can have significant impacts on the computational results, affecting predictions of wall shear stress and precluding calculation of stresses and strains in the vessel wall. There are several methods proposed in the literature for modeling wall deformability, two of the most popular being the Arbitrary Lagrangian Eularian (ALE) and Couple Momentum Methods (CMM). Although both methods capture the essential characteristics of wall deformability, they can produce different results and computational performance. This provides a rigorous comparison which will aid in the choice of deformable wall model. Additionally, we consider the concept of prestress. Because the geometry for a patient-specific simulation is extracted from medical image data of the \textit{in vivo} cardiovascular system, the vessel walls carry an internal stress which holds the geometry in equilibrium with hemodynamic pressures and viscous stresses. We implement prestress in both ALE and CMM contexts and confirm that it is necessary to avoid over-inflation of the anatomic domain. Although studied mostly within the context of coronary flow simulations, the methods and approaches outlined in this thesis are designed to be generally applicable across other domains in computational modeling, fluid dynamics, and biomechanics. Automated tuning is a general framework for assimilating multiple sources of target data to inform optimal input parameter values, and can broadly be applied in multiscale modeling. The methods for uncertainty quantification can be adapted to assess variability of simulations in other computational fluid mechanics and biomechanics contexts. The results from the wall deformability comparison can also be extended to apply to other contexts including other cardiovascular diseases, respiratory flow, and medical devices. In addition to providing insights into coronary flow simulations, this thesis aims to motivate the importance of tuning, uncertainty quantification, and model comparisons for other cardiovascular simulations and multiscale biological modeling more broadly.

Book Computational Cardiovascular Mechanics

Download or read book Computational Cardiovascular Mechanics written by Julius M. Guccione and published by Springer Science & Business Media. This book was released on 2010-01-08 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Cardiovascular Mechanics provides a cohesive guide to creating mathematical models for the mechanics of diseased hearts to simulate the effects of current treatments for heart failure. Clearly organized in a two part structure, this volume discusses various areas of computational modeling of cardiovascular mechanics (finite element modeling of ventricular mechanics, fluid dynamics) in addition to a description an analysis of the current applications used (solid FE modeling, CFD). Edited by experts in the field, researchers involved with biomedical and mechanical engineering will find Computational Cardiovascular Mechanics a valuable reference.

Book Mathematical Modelling of the Human Cardiovascular System

Download or read book Mathematical Modelling of the Human Cardiovascular System written by Alfio Quarteroni and published by Cambridge University Press. This book was released on 2019-05-09 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses the mathematical and numerical modelling of the human cardiovascular system, from patient data to clinical applications.

Book Cardiovascular Mathematics

Download or read book Cardiovascular Mathematics written by Luca Formaggia and published by Springer Science & Business Media. This book was released on 2010-06-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes. This book offers a mathematically sound and up-to-date foundation to the training of researchers and serves as a useful reference for the development of mathematical models and numerical simulation codes.

Book Computational Hemodynamics     Theory  Modelling and Applications

Download or read book Computational Hemodynamics Theory Modelling and Applications written by Jiyuan Tu and published by Springer. This book was released on 2015-02-24 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be understood. This unique book is one of the first to bring together knowledge from multiple disciplines, providing a starting point to each of the individual disciplines involved, attempting to ease the steep learning curve. This book presents elementary knowledge on the physiology of the cardiovascular system; basic knowledge and techniques on reconstructing geometric models from medical imaging; mathematics that describe fluid and structural mechanics, and corresponding numerical/computational methods to solve its equations and problems. Many practical examples and case studies are presented to reinforce best practice guidelines for setting high quality computational models and simulations. These examples contain a large number of images for visualization, to explain cardiovascular physiological functions and disease. The reader is then exposed to some of the latest research activities through a summary of breakthrough research models, findings, and techniques. The book’s approach is aimed at students and researchers entering this field from engineering, applied mathematics, biotechnology or medicine, wishing to engage in this emerging and exciting field of computational hemodynamics modelling.

Book Image Based Computational Modeling of the Human Circulatory and Pulmonary Systems

Download or read book Image Based Computational Modeling of the Human Circulatory and Pulmonary Systems written by Krishnan B. Chandran and published by Springer Science & Business Media. This book was released on 2010-11-18 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems provides an overview of the current modeling methods and applications enhancing interventional treatments and computer-aided surgery. A detailed description of the techniques behind image acquisition, processing and three-dimensional reconstruction are included. Techniques for the computational simulation of solid and fluid mechanics and structure interaction are also discussed, in addition to various cardiovascular and pulmonary applications. Engineers and researchers involved with image processing and computational modeling of human organ systems will find this a valuable reference.

Book Cardiovascular Computing   Methodologies and Clinical Applications

Download or read book Cardiovascular Computing Methodologies and Clinical Applications written by Spyretta Golemati and published by Springer. This book was released on 2019-02-12 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive guide to the state-of-the-art in cardiovascular computing and highlights novel directions and challenges in this constantly evolving multidisciplinary field. The topics covered span a wide range of methods and clinical applications of cardiovascular computing, including advanced technologies for the acquisition and analysis of signals and images, cardiovascular informatics, and mathematical and computational modeling.

Book Computational And Mathematical Methods In Cardiovascular Physiology

Download or read book Computational And Mathematical Methods In Cardiovascular Physiology written by Liang Zhong and published by World Scientific. This book was released on 2019-04-26 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiovascular diseases (CVD) including heart diseases, peripheral vascular disease and heart failure, account for one-third of deaths throughout the world. CVD risk factors include systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, and diabetic status. Clinical trials have demonstrated that when modifiable risk factors are treated and corrected, the chances of CVD occurring can be reduced. This illustrates the importance of this book's elaborate coverage of cardiovascular physiology by the application of mathematical and computational methods.This book has literally transformed Cardiovascular Physiology into a STEM discipline, involving (i) quantitative formulations of heart anatomy and physiology, (ii) technologies for imaging the heart and blood vessels, (iii) coronary stenosis hemodynamics measure by means of fractional flow reserve and intervention by grafting and stenting, (iv) fluid mechanics and computational analysis of blood flow in the heart, aorta and coronary arteries, and (v) design of heart valves, percutaneous valve stents, and ventricular assist devices.So how is this mathematically and computationally configured landscape going to impact cardiology and even cardiac surgery? We are now entering a new era of mathematical formulations of anatomy and physiology, leading to technological formulations of medical and surgical procedures towards more precise medicine and surgery. This will entail reformatting of (i) the medical MD curriculum and courses, so as to educate and train a new generation of physicians who are conversant with medical technologies for applying into clinical care, as well as (ii) structuring of MD-PhD (Computational Medicine and Surgery) Program, to train competent medical and surgical specialists in precision medical care and patient-specific surgical care.This book provides a gateway for this new emerging scenario of (i) science and engineering based medical educational curriculum, and (ii) technologically oriented medical and surgical procedures. As such, this book can be usefully employed as a textbook for courses in (i) cardiovascular physiology in both the schools of engineering and medicine of universities, as well as (ii) cardiovascular engineering in biomedical engineering departments worldwide.

Book Coronary Pressure

    Book Details:
  • Author : N.H. Pijls
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 9401588341
  • Pages : 348 pages

Download or read book Coronary Pressure written by N.H. Pijls and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiologists must answer three important questions when evaluating and treating patients with a coronary artery stenosis. As a physiologist: "What is the effect of this stenosis on coronary blood flow and myocardial function?"; as a clinician: " Is this lesion responsible for the patient's symptoms?"; and finally as an interventionalist: "Will revascularization of this artery improve the patient?" Fundamentally, the answer to these questions can be given to a large extent by measuring coronary pressure. That is the rationale of writing this book. 1. 1 Historical overview. Andreas Gruentzig and most interventional cardiologists in the early days of PTCA, had the intuitive feeling that pressure measurements could help to establish the severity of a coronary stenosis and to monitor the progress and result of a coronary intervention. At that time, measuring coronary pressure by the balloon catheter was part of a standard procedure. A residual transstenotic gradient of less than 15 mmHg was generally considered as a good result. Later, however, it turned out that measuring these (resting) gradients with balloon catheters was inaccurate an only had a limited prognostic value. Moreover, because there was no consistent theory to correlate pressure measurements to blood flow, the interest in measuring coronary pressures faded and disappeared almost completely with the introduction of new balloon catheters not intended for pressure measurement.

Book Computational Modeling for Assessing Coronary Artery Pathophysiology

Download or read book Computational Modeling for Assessing Coronary Artery Pathophysiology written by Christos Bourantas and published by Frontiers Media SA. This book was released on 2022-09-27 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Cardiovascular Biomechanics

Download or read book Cardiovascular Biomechanics written by Peter R. Hoskins and published by Springer. This book was released on 2017-02-16 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a balanced presentation of the fundamental principles of cardiovascular biomechanics research, as well as its valuable clinical applications. Pursuing an integrated approach at the interface of the life sciences, physics and engineering, it also includes extensive images to explain the concepts discussed. With a focus on explaining the underlying principles, this book examines the physiology and mechanics of circulation, mechanobiology and the biomechanics of different components of the cardiovascular system, in-vivo techniques, in-vitro techniques, and the medical applications of this research. Written for undergraduate and postgraduate students and including sample problems at the end of each chapter, this interdisciplinary text provides an essential introduction to the topic. It is also an ideal reference text for researchers and clinical practitioners, and will benefit a wide range of students and researchers including engineers, physicists, biologists and clinicians who are interested in the area of cardiovascular biomechanics.

Book Artificial Intelligence in Cardiothoracic Imaging

Download or read book Artificial Intelligence in Cardiothoracic Imaging written by Carlo N. De Cecco and published by Springer Nature. This book was released on 2022-04-22 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of current and potential applications of artificial intelligence (AI) for cardiothoracic imaging. Most AI systems used in medical imaging are data-driven and based on supervised machine learning. Clinicians and AI specialists can contribute to the development of an AI system in different ways, focusing on their respective strengths. Unfortunately, communication between these two sides is far from fluent and, from time to time, they speak completely different languages. Mutual understanding and collaboration are imperative because the medical system is based on physicians’ ability to take well-informed decisions and convey their reasoning to colleagues and patients. This book offers unique insights and informative chapters on the use of AI for cardiothoracic imaging from both the technical and clinical perspective. It is also a single comprehensive source that provides a complete overview of the entire process of the development and use of AI in clinical practice for cardiothoracic imaging. The book contains chapters focused on cardiac and thoracic applications as well more general topics on the potentials and pitfalls of AI in medical imaging. Separate chapters will discuss the valorization, regulations surrounding AI, cost-effectiveness, and future perspective for different countries and continents. This book is an ideal guide for clinicians (radiologists, cardiologists etc.) interested in working with AI, whether in a research setting developing new AI applications or in a clinical setting using AI algorithms in clinical practice. The book also provides clinical insights and overviews for AI specialists who want to develop clinically relevant AI applications.

Book Computational Methods of Modeling Vascular Geometry and Tracking Pulmonary Motion from Medical Images

Download or read book Computational Methods of Modeling Vascular Geometry and Tracking Pulmonary Motion from Medical Images written by Guanglei Xiong and published by Stanford University. This book was released on 2011 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern anatomical medical imaging technologies, such as computed tomography and magnetic resonance, capture structures of the human body in exquisite detail. Computational anatomy is a developing discipline to extract and characterize the anatomy from images. Unfortunately, anatomical images do not reveal the functional behavior. Computational physiology shows great potential to link the structure-function relationship by considering both the anatomical information and the physical governing laws. The simulated physiology can be used to assess physiological states, and more importantly predict the outcomes of interventions. On the other hand, advances in the functional imaging techniques provide measured physiology information and should be utilized together with computational physiology. In the theme of computational anatomy and physiology, this dissertation describes computational methods of modeling vascular geometry for image-based blood flow computation and tracking pulmonary motion for image-guided radiation therapy. Blood flow computation is a useful tool to quantify in vivo hemodynamics. The essential first step is to model vascular geometry from medical imaging data. I have developed a new workflow for this task. The geometric model construction is based on 3D image segmentation and geometric processing. To represent the topology of the constructed model, I have developed a novel centerline extraction method. To account for compliant vessels, methods to assign spatially-varying mechanical properties of the vessel wall are also developed. The workflow greatly increases the modeling efficiency. The combination of the patient-specific geometry and wall deformation can enhance the fidelity of blood flow simulation. Image-based blood flow computation also holds great promise for device design and surgical procedure evaluation. Next, I have developed novel virtual intervention methods to deploy stents or stent grafts to patient-specific pre-operative geometric models constructed from medical images. These methods enable prospective model construction and may be used to evaluate the outcomes of alternative treatment options. Respiratory motion is closely related to the physiology of the lung. Finally, I have developed a novel framework to track patient-specific pulmonary motion from 4D computed tomography images. A large set of vascular junction structures in the lung are identified as landmarks and tracked to obtain their motion trajectories. This framework can provide accurate motion information, which is important in radiation therapy to reduce healthy tissue irradiation while allowing target dose escalation. This work demonstrates the importance of the geometry and motion modeling tools in computational anatomy and physiology. Accurate physiological information, whether simulated or measured, will benefit the diagnosis and treatment of various diseases.

Book Artificial Intelligence for Computational Modeling of the Heart

Download or read book Artificial Intelligence for Computational Modeling of the Heart written by Tommaso Mansi and published by Academic Press. This book was released on 2019-12 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications. Presents recent advances in computational modeling of heart function and artificial intelligence technologies for subject-specific applications Discusses AI-based technologies for robust anatomical modeling from medical images, data-driven reduction of multi-scale cardiac models, and estimations of physiological parameters from clinical data Illustrates the technology through concrete clinical applications and discusses potential impacts and next steps needed for clinical translation

Book Mathematical Modeling of Cardiovascular Systems  From Physiology to the Clinic

Download or read book Mathematical Modeling of Cardiovascular Systems From Physiology to the Clinic written by Julius Guccione and published by Frontiers Media SA. This book was released on 2020-01-13 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hemodynamic Forces and Endothelial Mechanobiology in Vascular Diseases

Download or read book Hemodynamic Forces and Endothelial Mechanobiology in Vascular Diseases written by Chih-Yu Yang and published by Frontiers Media SA. This book was released on 2022-08-29 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational biomechanics for ventricle arterial dysfunction and remodeling in heart failure  volume II

Download or read book Computational biomechanics for ventricle arterial dysfunction and remodeling in heart failure volume II written by Yunlong Huo and published by Frontiers Media SA. This book was released on 2023-01-09 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: