EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Methods in Automated DNA Sequencing

Download or read book Computational Methods in Automated DNA Sequencing written by Michael C. Giddings and published by . This book was released on 1997 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods for Next Generation Sequencing Data Analysis

Download or read book Computational Methods for Next Generation Sequencing Data Analysis written by Ion Mandoiu and published by John Wiley & Sons. This book was released on 2016-10-03 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.

Book Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences

Download or read book Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences written by Cyriac Kandoth and published by . This book was released on 2010 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The need for automating genome analysis is a result of the tremendous amount of genomic data. As of today, a high-throughput DNA sequencing machine can run millions of sequencing reactions in parallel, and it is becoming faster and cheaper to sequence the entire genome of an organism. Public databases containing genomic data are growing exponentially, and hence the rise in demand for intuitive automated methods of DNA analysis and subsequent gene identification. However, the complexity of gene organization makes automation a challenging task, and smart algorithm design and parallelization are necessary to perform accurate analyses in reasonable amounts of time. This work describes two such automated methods for the identification of novel genes within given DNA sequences. The first method utilizes negative selection patterns as an evolutionary rationale for the identification of additional members of a gene family. As input it requires a known protein coding gene in that family. The second method is a massively parallel data mining algorithm that searches a whole genome for inverted repeats (palindromic sequences) and identifies potential precursors of non-coding RNA genes. Both methods were validated successfully on the fully sequenced and well studied plant species, Arabidopsis thaliana"--Abstract, leaf iv.

Book Computational Methods for Fast and Accurate DNA Fragment Assembly

Download or read book Computational Methods for Fast and Accurate DNA Fragment Assembly written by Carolyn F. Allex and published by . This book was released on 1999 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Automated DNA Sequencing and Analysis

Download or read book Automated DNA Sequencing and Analysis written by Mark D. Adams and published by Elsevier. This book was released on 1994-06-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely book for DNA researchers, Automated DNA Sequencing and Analysis reviews and assesses the state of the art of automated DNA sequence analysis-from the construction of clone libraries to the developmentof laboratory and community databases. It presents the methodologies and strategies of automated DNA sequence analysis in a way that allows them to be compared and contrasted. By taking a broad view of the process of automated sequence analysis, the present volume bridges the gap between the protocols supplied with instrument and reaction kits and the finalized data presented in the research literature. It will be an invaluable aid to both small laboratories that are interested in taking maximum advantageof automated sequence resources and to groups pursuing large-scale cDNA and genomic sequencing projects. The field of automation in DAN sequencing and analysis is rapidly moving, this book fulfils those needs, reviews the history of the art and provides pointers to future development.

Book High Performance Computational Methods for Biological Sequence Analysis

Download or read book High Performance Computational Methods for Biological Sequence Analysis written by Tieng K. Yap and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Performance Computational Methods for Biological Sequence Analysis presents biological sequence analysis using an interdisciplinary approach that integrates biological, mathematical and computational concepts. These concepts are presented so that computer scientists and biomedical scientists can obtain the necessary background for developing better algorithms and applying parallel computational methods. This book will enable both groups to develop the depth of knowledge needed to work in this interdisciplinary field. This work focuses on high performance computational approaches that are used to perform computationally intensive biological sequence analysis tasks: pairwise sequence comparison, multiple sequence alignment, and sequence similarity searching in large databases. These computational methods are becoming increasingly important to the molecular biology community allowing researchers to explore the increasingly large amounts of sequence data generated by the Human Genome Project and other related biological projects. The approaches presented by the authors are state-of-the-art and show how to reduce analysis times significantly, sometimes from days to minutes. High Performance Computational Methods for Biological Sequence Analysis is tremendously important to biomedical science students and researchers who are interested in applying sequence analyses to their studies, and to computational science students and researchers who are interested in applying new computational approaches to biological sequence analyses.

Book DNA Sequencing Strategies

Download or read book DNA Sequencing Strategies written by Wilhelm Ansorge and published by Wiley-Liss. This book was released on 1997 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This outstanding lab bench reference to the technology of DNA sequencing offers a collection of concise sequencing strategies and cloning protocols. Concentrates on the most up-to-the-minute automated methods and advanced approaches. Preparing DNA for sequencing, sequencing single- doubled-stranded DNA and their variations, how to optimise the primers used, preparation of DNA sequencing gels and the actual collection of results, labelling of DNA fragments for sequencing and data analysis are among the topics covered.

Book DNA Sequencing Protocols

    Book Details:
  • Author : Annette M. Griffin
  • Publisher : Springer Science & Business Media
  • Release : 2008-02-02
  • ISBN : 1592595103
  • Pages : 386 pages

Download or read book DNA Sequencing Protocols written by Annette M. Griffin and published by Springer Science & Business Media. This book was released on 2008-02-02 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of DNA Sequencing Protocols is to provide detailed practical procedures for the widest range of DNA sequencing meth ods, and we believe that all the vanguard techniques now being applied in this fast-evolving field are comprehensively covered. Sequencing technology has advanced at a phenomenal rate since the original methods were first described in the late 1970s and there is now a huge variety of strategies and methods that can be employed to determine the sequence of any DNA of interest. More recently, a large number of new and innovative sequencing techniques have been developed, including the use of such novel polymerases as Tag poly merase and Sequenase, the harnessing of PCR technology for linear amplification (cycle) sequencing, and the advent of automated DNA sequencers. DNA sequencing is surely one of the most important techniques in the molecular biology laboratory. Sequence analysis is providing an increasingly useful approach to the characterization of biological systems, and major multinational projects are already underway to map and sequence the entire genome of organisms, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, and Homo sapiens. Most scientists recognize the importance of DNA sequence data and perceive DNA sequencing as a valuable and indispensable aspect of their work. Recent technological advances, especially in the area of automated sequencing, have removed much of the drudg ery that was formerly associated with the technique, whereas innova tive computer software has greatly simplified the analysis and manipulation of sequence data.

Book Automation in Proteomics and Genomics

Download or read book Automation in Proteomics and Genomics written by Gil Alterovitz and published by John Wiley & Sons. This book was released on 2009-03-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decade DNA sequencing costs have decreased over a magnitude, largely because of increasing throughput by incremental advances in tools, technologies and process improvements. Further cost reductions in this and in related proteomics technologies are expected as a result of the development of new high-throughput techniques and the computational machinery needed to analyze data generated. Automation in Proteomics & Genomics: An Engineering Case-Based Approach describes the automation technology currently in the areas of analysis, design, and integration, as well as providing basic biology concepts behind proteomics and genomics. The book also discusses the current technological limitations that can be viewed as an emerging market rather than a research bottleneck. Topics covered include: molecular biology fundamentals: from ‘blueprint’ (DNA) to ‘task list’ (RNA) to ‘molecular machine’ (protein); proteomics methods and technologies; modelling protein networks and interactions analysis via automation: DNA sequencing; microarrays and other parallelization technologies; protein characterization and identification; protein interaction and gene regulatory networks design via automation: DNA synthesis; RNA by design; building protein libraries; synthetic networks integration: multiple modalities; computational and experimental methods; trends in automation for genomics and proteomics new enabling technologies and future applications Automation in Proteomics & Genomics: An Engineering Case-Based Approach is an essential guide to the current capabilities and challenges of high-throughput analysis of genes and proteins for bioinformaticians, engineers, chemists, and biologists interested in developing a cross-discipline problem-solving based approach to systems biology.

Book Computational Methods in Genome Research

Download or read book Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of computational methods to solve scientific and pratical problems in genome research created a new interdisciplinary area that transcends boundaries traditionally separating genetics, biology, mathematics, physics, and computer science. Computers have been, of course, intensively used for many year~ in the field of life sciences, even before genome research started, to store and analyze DNA or proteins sequences, to explore and model the three-dimensional structure, the dynamics and the function of biopolymers, to compute genetic linkage or evolutionary processes etc. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function of genomes of higher organisms, has generated, however, not only a huge and burgeoning body of data but also a new class of scientific questions. The nature and complexity of these questions will require, beyond establishing a new kind of alliance between experimental and theoretical disciplines, also the development of new generations both in computer software and hardware technologies, respectively. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can ·attack with success. Many of us still feel that computational models rationalizing experimental findings in genome research fulfil their promises more slowly than desired. There also is an uncertainity concerning the real position of a 'theoretical genome research' in the network of established disciplines integrating their efforts in this field.

Book Computational Methods for Understanding Bacterial and Archaeal Genomes

Download or read book Computational Methods for Understanding Bacterial and Archaeal Genomes written by Ying Xu and published by World Scientific. This book was released on 2008 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 500 prokaryotic genomes have been sequenced to date, and thousands more have been planned for the next few years. While these genomic sequence data provide unprecedented opportunities for biologists to study the world of prokaryotes, they also raise extremely challenging issues such as how to decode the rich information encoded in these genomes. This comprehensive volume includes a collection of cohesively written chapters on prokaryotic genomes, their organization and evolution, the information they encode, and the computational approaches needed to derive such information. A comparative view of bacterial and archaeal genomes, and how information is encoded differently in them, is also presented. Combining theoretical discussions and computational techniques, the book serves as a valuable introductory textbook for graduate-level microbial genomics and informatics courses.

Book Computational Methods for the Analysis of Next Generation Sequencing Data

Download or read book Computational Methods for the Analysis of Next Generation Sequencing Data written by Wei Wang and published by . This book was released on 2014 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, next generation sequencing (NGS) technology has emerged as a powerful approach and dramatically transformed biomedical research in an unprecedented scale. NGS is expected to replace the traditional hybridization-based microarray technology because of its affordable cost and high digital resolution. Although NGS has significantly extended the ability to study the human genome and to better understand the biology of genomes, the new technology has required profound changes to the data analysis. There is a substantial need for computational methods that allow a convenient analysis of these overwhelmingly high-throughput data sets and address an increasing number of compelling biological questions which are now approachable by NGS technology. This dissertation focuses on the development of computational methods for NGS data analyses. First, two methods are developed and implemented for detecting variants in analysis of individual or pooled DNA sequencing data. SNVer formulates variant calling as a hypothesis testing problem and employs a binomial-binomial model to test the significance of observed allele frequency by taking account of sequencing error. SNVerGUI is a GUI-based desktop tool that is built upon the SNVer model to facilitate the main users of NGS data, such as biologists, geneticists and clinicians who often lack of the programming expertise. Second, collapsing singletons strategy is explored for associating rare variants in a DNA sequencing study. Specifically, a gene-based genome-wide scan based on singleton collapsing is performed to analyze a whole genome sequencing data set, suggesting that collapsing singletons may boost signals for association studies of rare variants in sequencing study. Third, two approaches are proposed to address the 3'UTR switching problem. PolyASeeker is a novel bioinformatics pipeline for identifying polyadenylation cleavage sites from RNA sequencing data, which helps to enhance the knowledge of alternative polyadenylation mechanisms and their roles in gene regulation. A change-point model based on a likelihood ratio test is also proposed to solve such problem in analysis of RNA sequencing data. To date, this is the first method for detecting 3'UTR switching without relying on any prior knowledge of polyadenylation cleavage sites.

Book Computational Methods for Studying Gene Regulation and Genome Organization Using High throughput DNA Sequencing

Download or read book Computational Methods for Studying Gene Regulation and Genome Organization Using High throughput DNA Sequencing written by Giancarlo A. Bonora and published by . This book was released on 2015 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The full sequencing of the human genome ushered in the genomics era and laid the foundation for a more comprehensive understanding of gene regulation and development. But, since the DNA sequence represents only one aspect of the genomic information housed within the nucleus, the question of exactly how it is utilized to direct developmental programs and tissue-specific gene expression is still an open one. However, rapid advances in high-throughput DNA sequencing (HTS) technologies over the past decade have allowed biologists to begin to tackle the question on a genomic scale. HTS has been coupled to bisulfite conversion of DNA for assessing cytosine methylation (bisulfite sequencing), to chromatin immunoprecipitation for ascertaining genomic locations bound by specific factors or found in a particular chromatin state (ChIP-seq), to the isolation of transcripts for the measurement of gene expression (RNA-seq), and to methods of chromosome conformation capture for the identification of genome-wide DNA-DNA interactions (4C-seq and Hi-C). The focus of my doctoral research has been the development of novel bioinformatics approaches to analyze the data produced by these technologies in order to shed light on how distinct cell identities are established and maintained. Here, I present highlights of this work in six chapters. Chapter 1 presents a study investigating DNA methylation changes going from the differentiated to pluripotent state, which shows that changes predominantly occur late in the process and are strongly associated with changes to chromatin state. Chapter 2 introduces methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) as a method for assessing precise differential DNA methylation at cost comparable to RRBS, while providing additional information over a coverage area more comparable to WGBS. Chapter 3 presents a study showing that inhibition of ribonucleotide reductase decreased DNA methylation genome-wide by enhancing the incorporation of a cytidine analog into DNA. Chapter 4 describes a study showing that, for genes important to leaf senescence, temporal changes in expression closely matched changes to two histone modifications. Chapter 5 reviews cutting-edge research exploring the link between regulatory networks and genome organization. Chapter 6 describes a study showing that regulators responsible for cell identity contribute to cell type-specific genome organization.

Book Automated DNA Sequencing and Analysis

Download or read book Automated DNA Sequencing and Analysis written by Mark D. Adams and published by Elsevier. This book was released on 2012-12-02 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely book for DNA researchers, Automated DNA Sequencing and Analysis reviews and assesses the state of the art of automated DNA sequence analysis-from the construction of clone libraries to the developmentof laboratory and community databases. It presents the methodologies and strategies of automated DNA sequence analysis in a way that allows them to be compared and contrasted. By taking a broad view of the process of automated sequence analysis, the present volume bridges the gap between the protocols supplied with instrument and reaction kits and the finalized data presented in the research literature. It will be an invaluable aid to both small laboratories that are interested in taking maximum advantageof automated sequence resources and to groups pursuing large-scale cDNA and genomic sequencing projects. The field of automation in DAN sequencing and analysis is rapidly moving, this book fulfils those needs, reviews the history of the art and provides pointers to future development.

Book Computational Methods for Efficient Processing and Analysis of Short read Next Generation DNA Sequencing Data

Download or read book Computational Methods for Efficient Processing and Analysis of Short read Next Generation DNA Sequencing Data written by Praveen Nadukkalam Ravindran and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: DNA sequencing has transformed the discipline of population genetics, which seeks to assess the level of genetic diversity within species or populations, and infer the geographic and temporal distributions between members of a population. Restriction-site associated DNA sequencing (RADSeq) is a NGS technique, which produce data that consists of relatively short (typically 50 to 300 nucleotide) fragments or "reads" of sequenced DNA and enables large-scale analysis of individuals and populations. In this thesis, we describe computational methods, which use graph-based structures to represent these short reads obtained and to capture the relationships among them. A key challenge in RADSeq analysis is to identify optimal parameter settings for assignment of reads to loci (singular: Locus), which correspond to specific regions in the genome. The parameter sweep is computationally intensive, as the entire analysis needs to be run for each parameter set. We propose a graph-based structure (RADProc), which provides persistence and eliminates redundancy to enable parameter sweeps. For 20 green crab samples and 32 different parameter sets, RADProc took only 2.5 hours while the widely used Stacks software took 78 hours. Another challenge is to identify paralogs, sequences that are highly similar due to recent duplication events, but occur in different regions of the genome and should not to be merged into the same locus. We introduce PMERGE, which identifies paralogs by clustering the catalog locus consensus sequences based on similarity. PMERGE is built on the fact that paralogs may be wrongly merged into a single locus in some but not all samples. PMERGE identified 62%-87% of paralogs in the Atlantic salmon and green crab datasets. Gene flow is the movement of alleles, specific sequence variants at a given locus, between populations and is an important indicator of population mixing that changes genetic diversity within the populations. We use the RADProc graph to infer gene flow among populations using allele frequency differences in exclusively shared alleles in each pair of populations. The method successfully inferred gene flow patterns in simulated datasets and provided insights into reasons for observed hybridization at two locations in a green crab dataset.

Book Theoretical and Computational Methods in Genome Research

Download or read book Theoretical and Computational Methods in Genome Research written by Sándor Suhai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application ofcomputational methods to solve scientific and practical problems in genome research created a new interdisciplinary area that transcends boundaries tradi tionally separating genetics, biology, mathematics, physics, and computer science. Com puters have, of course, been intensively used in the field of life sciences for many years, even before genome research started, to store and analyze DNA or protein sequences; to explore and model the three-dimensional structure, the dynamics, and the function of biopolymers; to compute genetic linkage or evolutionary processes; and more. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function ofgenomes ofhigher organisms, has generated, how ever, not only a huge and exponentially increasing body of data but also a new class of scientific questions. The nature and complexity of these questions will also require, be yond establishing a new kind ofalliance between experimental and theoretical disciplines, the development of new generations both in computer software and hardware technolo gies. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can attack with suc cess. Many of us still feel that computational models rationalizing experimental findings in genome research fulfill their promises more slowly than desired. There is also an uncer tainty concerning the real position of a "theoretical genome research" in the network of established disciplines integrating their efforts in this field.

Book Advances in Computers

    Book Details:
  • Author : Marvin Zelkowitz
  • Publisher : Elsevier
  • Release : 2006-12-11
  • ISBN : 0080466346
  • Pages : 335 pages

Download or read book Advances in Computers written by Marvin Zelkowitz and published by Elsevier. This book was released on 2006-12-11 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of bioinformatics and computational biology arose due to the need to apply techniques from computer science, statistics, informatics, and applied mathematics to solve biological problems. Scientists have been trying to study biology at a molecular level using techniques derived from biochemistry, biophysics, and genetics. Progress has greatly accelerated with the discovery of fast and inexpensive automated DNA sequencing techniques. As the genomes of more and more organisms are sequenced and assembled, scientists are discovering many useful facts by tracing the evolution of organisms by measuring changes in their DNA, rather than through physical characteristics alone. This has led to rapid growth in the related fields of phylogenetics, the study of evolutionary relatedness among various groups of organisms, and comparative genomics, the study of the correspondence between genes and other genomic features in different organisms. Comparing the genomes of organisms has allowed researchers to better understand the features and functions of DNA in individual organisms, as well as provide insights into how organisms evolve over time. The first four chapters of Advances in Computers focus on algorithms for comparing the genomes of different organisms. Possible concrete applications include identifying the basis for genetic diseases and tracking the development and spread of different forms of Avian flu. As researchers begin to better understand the function of DNA, attention has begun shifting towards the actual proteins produced by DNA. The final two chapters explore proteomic techniques for analyzing proteins directly to identify their presence and understand their physical structure. Written by active PhD researchers in computational biology and bioinformatics